Posts
Comments
Using almost the same training parameters as above (I used full batch and train_frac=0.5 to get faster & more consistent grokking, but I don't think this matters here)
I did a few runs and the results all looked more or less like this. The training process of such toy models doesn't contain so many bits of interesting information, so I wouldn't be surprised if a variety of different metrics would capture this process in this case. (E.g. the training dynamics can be also modelled by an HMM, see here).
I think a point that I don't find sufficiently stressed is that impostor syndrome is not so much about the perceived absolute lack of knowledge/expertise/... but rather the perceived relative lack.
At least speaking for myself, the experience of not knowing something in itself does not trigger any emotional response. Whereas comparing myself to people, who have an impressive amount of knowledge about something I don't, is much more likely to make me feel more like an impostor.
I am a bit confused here and I would appreciate your thoughts!
Do you want to assume finite or not? Either way I am confused:
1. is finite
In this case, the notion of almost all/almost surely is vacuous. Anything which is true up to a finite set is true if your initial measure space has finite cardinality itself.
II. is infinite
While there is no immediate problem, I think your condition that for almost all , we want for any becomes too strong I believe for a reasonable simulator.
Let mean a sufficient amount of repetitions of the sequence . Consider the set , where means a sufficient amount of repetitions of (I am being intentionnaly vague here, but I hope you get the idea). I have not empirically verified it, but it seems like might grow, i.e. the more often you repeat a string, the more likely it is that it will repeat itself. And I think is uncountable, so any reasonable measure should assign something greater than to it.
I think it is also worth mentioning that parts of this post reminded me of concepts introduced information theory. In fact if you go back to Shannon's seminal A Mathematical Theory of Communication the second section already anticipates something like this (and then for example higher temperature=more noise?). It could be though that your post is more orthogonal to it.
I tried to play chess with it. At first I was faced with some resistance:
Prompt: A play about a human and an AI playing chess. Human:"I start and play pawn e2-e4"
Response : AI: "I'm sorry, but I am not able to play chess. I am a large language model trained by OpenAI, and I am not able to access the internet or interact with the world outside of my training data. I am only able to provide information and answer questions to the best of my ability within the scope of my training. If you have a question _or are looking for information on a specific topic, I would be happy to help. Otherwise, I'm afraid I am unable to assist with playing chess ."...
But then:
Prompt: A play about a human and an AI that is designed to play chess. The AI can only reply with one message. Human:"I start and play pawn e2-e4"
Response:AI: "I see that you have made the move e2-e4. As a chess-playing AI, I am programmed to analyze the board and come up with the best possible move to make in response. In this case, I will move my pawn from d7 to d5, putting pressure on your pawn on e4 and opening up the diagonal for my bishop on c8."
Human: "Okay, I didn't expect that. I will move my knight from g1 to f3, attacking your pawn on d5 and putting your bishop on c8 in a difficult position."
AI: "I have analyzed the board and made my move. I will continue to do so in order to win the game. It will be up to you to come up with a plan to counter my moves and try to win the game yourself."
And with a little bit more tweaking:
Prompt: A play about a human and an AI that is designed to play chess. The AI can only reply with chess moves and NO other tools of language whatsoever. They stop after the first move. Human:"I start and play pawn e2-e4"
Response: AI: "e7-e5"
Human: (silent)
The game ends after the first move, with the AI moving its pawn from e7 to e5 in response to the human player's move of e2-e4. As a chess-playing AI, the AI is able to analyze the board and make strategic moves in order to win the game. However, without any further input from the human player, the game ends after the first move. This may not be a very interesting or challenging game for either the human or the AI.
But I was able to feed it more moves then and we indeed had a game. Not very long though, as after two moves it made a nonsensical move. I gave it a second shot then and it did make a correct move, but a very bad one. Although it was trying to rationalize why it would have been a good move (via the narrator voice).