CBiddulph's Shortform

post by CBiddulph (caleb-biddulph) · 2025-01-30T21:35:10.165Z · LW · GW · 1 comments

Contents

1 comment

1 comments

Comments sorted by top scores.

comment by CBiddulph (caleb-biddulph) · 2025-01-30T21:35:10.409Z · LW(p) · GW(p)

There's been a widespread assumption that training reasoning models like o1 or r1 can only yield improvements on tasks with an objective metric of correctness, like math or coding. See this essay, for example, which seems to take as a given that the only way to improve LLM performance on fuzzy tasks like creative writing or business advice is to train larger models.

This assumption confused me, because we already know how to train models to optimize for subjective human preferences. We figured out a long time ago that we can train a reward model to emulate human feedback and use RLHF to get a model that optimizes this reward. AI labs could just plug this into the reward for their reasoning models, reinforcing the reasoning traces leading to responses that obtain higher reward. This seemed to me like a really obvious next step.

Well, it turns out that DeepSeek r1 actually does this. From their paper:

2.3.4. Reinforcement Learning for all Scenarios

To further align the model with human preferences, we implement a secondary reinforcement learning stage aimed at improving the model’s helpfulness and harmlessness while simultaneously refining its reasoning capabilities. Specifically, we train the model using a combination of reward signals and diverse prompt distributions. For reasoning data, we adhere to the methodology outlined in DeepSeek-R1-Zero, which utilizes rule-based rewards to guide the learning process in math, code, and logical reasoning domains. For general data, we resort to reward models to capture human preferences in complex and nuanced scenarios. We build upon the DeepSeek-V3 pipeline and adopt a similar distribution of preference pairs and training prompts. For helpfulness, we focus exclusively on the final summary, ensuring that the assessment emphasizes the utility and relevance of the response to the user while minimizing interference with the underlying reasoning process. For harmlessness, we evaluate the entire response of the model, including both the reasoning process and the summary, to identify and mitigate any potential risks, biases, or harmful content that may arise during the generation process. Ultimately, the integration of reward signals and diverse data distributions enables us to train a model that excels in reasoning while prioritizing helpfulness and harmlessness.

This checks out to me. I've already noticed that r1 feels significantly better than other models at creative writing, which is probably due to this human preference training. While o1 was no better at creative writing than other models, this might just mean that OpenAI didn't prioritize training o1 on human preferences. My Manifold market currently puts a 65% chance on chain-of-thought training outperforming traditional LLMs by 2026, and it should probably be higher at this point.

We need to adjust our thinking around reasoning models - there's no strong reason to expect that future models will be much worse at tasks with fuzzy success criteria.

Adapted from my previously-posted question [LW · GW], after cubefox [LW · GW] pointed out that DeepSeek is already using RLHF.