Posts

Comments

Comment by craigus on Open thread, Oct. 5 - Oct. 11, 2015 · 2015-10-05T23:15:37.591Z · score: 1 (1 votes) · LW · GW

Potential crank warning; non-physicist proposing experiments. Sorry if I'm way off-base here, please let me know where I've gone wrong.

I was contemplating MWI and dark matter, and wondered if dark matter was just the gravitational influence of matter in other universes, where the other universes' matter is distributed differently to ours. Google tells me that others have proposed theories like this, but I can't find if anyone has ever tried to test it.

Has anyone ever tried to test this directly? We have gravimeters sensitive enough that one "detected the gradual increase in surface gravity as workmen cleared snow from its laboratory roof".

Imagine an experiment was run using a source of quantum-random binary data, with the protocol to move a large mass close to and further away from the gravimeter based on the quantum data. My expectation based on this theory is that the gravimeter would measure:

  • Classically move the mass away from the gravimeter: A baseline of gravitational influence (earth/buildings/etc)
  • Classically move the mass close to the gravimeter: The full gravity of the mass (baseline + mass).
  • Quantumly move the mass close to the gravimeter: Some of the gravity of the mass.
  • Quantumly move the mass away from the gravimeter: Some of the gravity of the mass.

The experimenters would want to repeat the quantum mass movements many times, so that as many universes as possible are able to measure both the 'close to' and 'further away' positions of the mass at least once. (If the experiment only did 5 measurements, 2 out of 32 universes would have their experiment be 'mass is always close' or 'mass is always further away', and therefore don't get the full benefit of the experiment.

Interestingly if this theory were true, experiments could be run where the gravimeter and mass are used to communicate between universes.