Posts
Comments
Hi all (and thanks Ben for starting this thread),
Our group (Philosophy & Ethics group, TU Eindhoven, The Netherlands) has a call for three PhD positions which might be of interest to some of you (the deadline is very soon though - March 10). All three positions are fully funded and for a period of 4 years. Please feel free to get in touch or send me a PM if you'd like some additional info on them!
PhD Position A: Norms of Explainable AI
PhD Position B: Cognitive Science of AI
PhD Position C: Philosophy of Science/Social epistemology
Te problem of disagreements that arise due to different paradigms or 'schools of thought', which you mention, is an important problem as it concerns the possibility of so-called rational disagreements in science. This paper (published here) makes an attempt at providing a normative framework for such situations, suggesting that if scientists have at least some indications that the claims of their opponent is a result of a rational deliberation, they should epistemically tolerate their ideas, which means: they should treat them as potentially rational, their theory as potentially promising, and as a potential challenge to their own stance.
Of course, the main challenge for epistemic toleration is putting ourselves in the other one's shoes :) Like in the example you mention: if the others are working on an approach that is completely different from mine, it won't be easy for me to agree with everything they say, but that doesn't mean I should equate them with some junk scientists.
As for discussions via Github, that's interesting and probably we could discuss this in a separate thread, on the topic of different forms of scientific interaction. I think that peer-review can also be a useful form of dialogue, specially since a paper may end up going through different rounds of peer-review (sometimes also across different journals, in case it gets rejected in the beginning). However, preprint archives that we have nowadays are also valuable, since even if a paper keeps on being rejected (let's say unfairly, e.g. due to a dogmatic environment in the given discipline), others may still have access to it, cite it, and it may still have an impact.
Hi all, I've posted a few comments, but never introduced myself: I'm an academic working in philosophy of science and social epistemology, mainly on methodological issues underlying scientific inquiry, scientific rationality, etc. I'm coming from the EA forum, but on Ben's invitation I dropped by here a few days ago and I am genuinely curious about the prospects of this forum, its overall functions and its possible interactions with the academic research. So I'm happy to read and chip in where I can contribute :)
Again: you are conflating the descriptive and the normative. You are all the time giving examples of how science went wrong. And that may have well been the case. What I am saying is that, there are tools to mitigate these problems. In order to challenge my points, you'd have to show that chriopractics did not appear even worthy of pursuit *in view of the criteria I mentioned above* and yet it should have been pursued (I am not familiar with this branch of science, btw, so I don't have enough knowledge to say anything concerning its current status). But even if you could do this, this would be an extremely odd example, so you'd have to come up with a couple of them to make a normatively interesting point. Of course, I'd be happy to hear about that.
The confusion between the desctiptive (how things are) and the normative (how they should be) concerns also your comments on peer review, where you are bringing issues that are problematic in the current medical practice, but I don't see why we should consider them inherent to the peer-review procedure as such. Your points concern the presence of biases in science which make paradigmatic changes difficult, and that may indeed be a problem, but I don't see how abandoning the peer-review procedure is going to solve it.
Like I've mentioned, that's why there are indices of theory promise (see .e.g. this paper), which don't guarantee anything, but still make the assessment of some hypotheses more plausible than, say, research done within pseudo-medicine. These indices shouldn't be confused with how the scientific community actually reacts on novel theories since it is no news that sometimes scientists fail to employ the adequate criteria, reacting dogmatically (for some examples, see this case study from the history of earth sciences or this one from the history of medicine). So the fact that the scientific community fails to react in a warranted way to novel ideas doesn't imply that they couldn't do a better job at this. This is precisely why some grants are geared towards highs-risk high-reward schemes, so that projects which are clearly risky and may simply flop, get the funding.
The research in molecular biology was indeed quite tricky, but again, this is no way means that assessing it as not worthy of pursuit would have been a justified response at the time. Hence, it's important to distinguish between the descriptive and the normative dimensions when we speak of the assessment of scientific research.
As for the interview with Sydney Brenner, thanks for linking to it. I disagree though with his assessment of the peer-review system because he's not making an overall comparison between two systems, where we'd have to assess both the positive and the negative effects of the peer-review and then compare that with the positive and negative effects of possible alternative approaches. This means evaluating e.g.: how many crap papers are kept at bay this way, which without the peer-review system would simply get published; how much the lack of prestige or connections with the right people disadvantages one to publish in a journal vs. a blind peer-review procedure which mitigates this problem at least to some extent; how many women or minorities had problems with publication bias vs. the blind peer-review procedure, etc.
Right, which is why it's important to distinguish between a mere hunch and a "warranted hunch", the latter being based on certain indicators of promise (e.g. the idea has a potential of explaining novel phenomena, or explaining them better than the currently dominant theory, the inquiry is based on feasible methodology, etc.). These indicators of promise are in no way a guarantee that the idea will work out, but they allow us to distinguish between a sensible novel idea and junk science.
But to think that you cannot do better than chance at generating successful new hypotheses is obviously wrong.
It would be an uncharitable reading of Kuhn to interpret him in that way. He does speak of the performance of scientific theories in terms of different epistemic values, and already in SSR he does speak of a scientist having an initial hunch suggesting a given idea is promising.
From merely observing science's success, we can conclude that there has to be some kind of skill (Yudkowksy's take on this is here and here, among other places) that good scientists employ to do better than chance at picking what to work on.
There is actually a whole part of philosophy of science that deals with this topic, it goes under the name of the preliminary evaluation of scientific theories, their pursuit-worthiness, endorsement, etc.
A good scientist looks where progress could be made within his scientific paradigm
his or her* :)
What Eliezer says about Phlogiston is wrong.
For an excellent recent historical and philosophical study of the Chemical Revolution I recommend Hasok Chang's book "Is Water H2O?", who argues that the phlogistic chemistry was indeed worthy of pursuit at the time when it was abandoned.
One thing that went too far into relativism was Kuhn's insistence that there is no way to tell in advance which paradigm is going to be successful. His description of this is that you pick "teams" initially for all kinds of not-truth-tracking reasons, and you only figure out many years later whether your new paradigm will be winning or not.
This is a good point, though it's important to distinguish between assessing whether a paradigm is going to be successful (which may be impossible to say at the beginning of research) and assessing whether it is worthy of pursuit. The latter only means that for now, the paradigm seems promising, but of course, the whole research program may flop at some point. While Kuhn didn't address these problems in great detail, I linked in my previous comment to some papers that discuss his work with regard to these questions.
the lecturer of the course, a Kuhn expert, seemed to only be asking the question "How does (human-)science proceed?", and never "How should science proceed?"
It's a pity this issue wasn't explicitly discussed in the course you mention because it's actually really interesting. Some Kuhn scholars try to explain the relationship between the descriptive and the normative dimension you mention by bringing up the analogy with the grammar: just like we formulate a given grammar by looking at descriptive aspects of how the given language is used, this helps us to also formulate the normative aspects of how it should be used. Now, not everyone will agree about what this means when it comes to scientific inquiry, but I would defend the following claim: the normative has to be formulated within the boundaries of how science tends to evolve, where we may find issues that are problematic (for example, we may notice that scientists are insufficiently open-minded at times, or that sometimes they employ inadequate methods, etc.) and in view of which we may formulate some normative suggestions. In other words, the normative can't be formulated out of the blue, ignoring some important constraints which are hard to get rid of (e.g. the fact that different paradigms may come with different conceptual frameworks).
This is an interesting historical question, but I'd like to challenge your initial motivation ;) So the idea that sciences used to be pursued more effectively a century ago. Intuitively speaking, I don't see why this would be the case, so I'd first have to see some evidence (including the measure of effectiveness) for this claim. My impression is rather that due to immense fragmentation of today's science into sub-disciplines, there are more people working on particular problems who are effective in their own domains, while remaining largely unknown to the wider audience.
In fact, I would link a lower degree of interaction in the past science, in comparison to today's science (we have peer-review system, there are more conferences, there is an easier access to publications, etc.) with a lower degree of effectiveness. But of course, how exactly interaction and effectiveness/efficiency are related is an empirical question, so I'm open to be surprised :)
This is a nice summary of Kuhn's ideas from his SSR (with some really great examples). Your main question (where is in all this objectivity and how to get rid of relativism?) puzzled both Kuhn as well as the post-Kuhnian philosophers of science. In his later work (The Road Since Structure) Kuhn tried to answer these questions in more detail, leaning towards a Kantian interpretation of the world (roughly: even though we do not have an access to the world as such, the world does give a "resistance" to our attempts at forming knowledge about it, which is why not anything goes; a good guide for this is Paul Hoyningen-Huene's excellent book on Kuhn "Reconstructing scientific revolutions: Thomas S. Kuhn's philosophy of science").
I don't know enough about predictive coding to comment on that comparison, but here are two comments on some of the above issues:
1) While the shift from one paradigm to another often appears to be a matter of "mob psychology" (as Lakatos put it), Kuhn actually discusses elsewhere the process of 'persuasion' and 'translation' that the proponents of rivaling paradigm can employ. Even though scientists may belong to mutually incommensurable paradigms, the 'communication breakdown' can be avoided via these processes (for more on this see this, also available here).
2) Concerning the objectivity of the world, the reason why this issue is not so simple for Kuhn is that he rejects the idea of the "mind-independent world". This point is often misunderstood and either ignored or placed under Kuhn's 'obscure ideas' mainly because in his attempts to explicate it, Kuhn gets very close to the so-called continental philosophical style, which sometimes irks the shit out of analytically-minded philosophers ;) The following passage from a discussion on Kuhn may not make things much clearer without an additional context, but it points to the relevant parts of Kuhn's work on this and it hopefully shows why Kuhn doesn't accept a simple dichotomy between the mind-dependent and mind-independent world (bold emphasis added):
[According to Kuhn]
.. truth cannot be anything like correspondence to reality. I am not suggesting, let me emphasize, that there is a reality which science fails to get at. My point is rather that no sense can be made of the notion of reality as it has ordinarily functioned in philosophy of science. (Kuhn, 2000, p. 115)
Kuhn thus argues not only that the match between the mind and the reality that is independent from it is not assessable, but that this match is nonsensical.
But the natural sciences, dealing objectively with the real world (as they do), are generally held to be immune. Their truths (and falsities) are thought to transcend the ravages of temporal, cultural, and linguistic change. I am suggesting, of course, that they cannot do so. Neither the descriptive nor the theoretical language of natural science provides the bedrock such transcendence would require. (Ibid., p. 75)
The reasons for these claims need to be explicated in view of Kuhn’s discussion of the notion of world. First of all, Kuhn emphasizes the world-constitutive role of intentionality and mental representations (p. 103), of a lexicon that is always already in place (p. 86):
different languages impose different structures on the world . . . where the structure is different, the world is different. (Ibid., p. 52)
The world itself must be somehow lexicon-dependent. (Ibid., p. 77)
What is thus at stake is the notion of a mind-independent, or, in Putnam’s terms, ‘ready-made’ world. And for the reasons given above, this term is, for Kuhn, nonsensical. Nevertheless, he warns his readers that this does not imply that the world is somehow mind-dependent: ‘the metaphor of a mind-dependent world—like its cousin, the constructed or invented world—proves to be deeply misleading’ (ibid., p. 103).
How should the notion of world be treated then? Instead of the strict dichotomy between the mind-independent world and our representations of it, Kuhn proposes ‘a sort of post-Darwinian Kantianism. Like the Kantian categories, the lexicon supplies pre-conditions of possible experience’ (ibid., p. 104). And as the lexical categories change, both in a diachronous and a synchronous manner, ‘the world . . . alters with time and from one community to the next’ (ibid., p. 102). Kuhn compares a permanent, fixed, and stable foundation ‘underlying all these processes of differentiation and change’ to ‘Kant’s Ding an sich’, which ‘is ineffable, undescribable, undiscussable’ (ibid., p. 104). And what replaces the dichotomy of mind–language–thinking and the one big mind-independent world (ibid., p. 120) is the concept of ‘niche’: ‘the world is our representation of our niche’ (ibid., p. 103).
Those niches, which both create and are created by the conceptual and instrumental tools with which their inhabitants practice upon them, are as solid, real, resistant to arbitrary change as the external world was once said to be. (Ibid., p. 120)
Now, what has become of the notion of truth in Kuhn’s post-Darwinian Kantianism? Truth can at best be seen as having ‘only intra-theoretic applications’ (Kuhn, 1970, p. 266): ‘Evaluation of a statement’s truth values is, in short, an activity that can be conducted only with a lexicon already in place’ (Kuhn, 2000, p. 77). By contrast, ‘The ways of being-in-the-world which a lexicon provides are not candidates for true/false’ (ibid., p. 104). None of these ‘form[s] of life’, ‘practice[s]-in-the-world’ gives ‘privileged access to a real, as against an invented, world’ (ibid., pp. 103–104). Therefore the speech of theories becoming truer ‘has a vaguely ungrammatical ring: it is hard to know quite what those who use it have in mind’
(ibid., p. 115). Furthermore, if with Kuhn the sciences form a ‘complex but unsystematic structure of distinct specialties or species’ and therefore have to be ‘viewed as plural’ (ibid., p. 119), and if the niches
‘do not sum to a single coherent whole of which we and the practitioners of all the individual scientific specialties are inhabitants’ (ibid., p. 120), then ‘there is no basis for talk of science’s gradual elimination of all worlds excepting the single real one’ (ibid., p. 86).
This sums up some parts of late Kuhn's thoughts on the growth of knowledge and its non-additive character. Now, one can ask: but what does this practically mean? What kind of methodological guidelines does this give us? And this is where issues are perhaps not so surprising (or disturbing). I think the most important points here are:
1) a complex defeasible character of scientific models and theories (complex in the sense that falsifying a theory may not be a matter of deciding in view of one or two experiments, as discussed in the article; instead Kuhn speaks of the importance of 'epistemic values', such as scope, adequacy, simplicity, consistency, fruitfulness -- which guide scientists to prefer one theory over another, and which at the end of the day lead the community to replace one paradigm with another; this is closely related to the next point);
2) instead of assessing the truthfulness of scientific knowledge, post-Kuhnian philosophers of science prefer to speak of the assessment of their performance in terms of epistemic (or as sometimes called 'cognitive') values, based on empirical evidence (in other words, scientists are considered as accepting a theory not because it is 'true' or 'truth-like' but because it scores highly with respect to its predictive accuracy, explanatory scope, etc.
3) the presence of conceptual frameworks underlying scientific theories, which complicate their unification and integration (and which have inspired a whole range of accounts proposing 'scientific pluralism'), and which may also give rise to rational disagreements in science, make the learning and communication across paradigms cumbersome, etc.