Explicitness

post by TsviBT · 2023-06-12T15:05:04.962Z · LW · GW · 0 comments

Contents

  Explicitness and inexplicitness
  Explicitizing
  Examples
    Classes of examples of explicitizing
    Examples of inexplicitness and inexplicitizing
    The axiom of choice
    Group theory from concrete transformations
  Other distinctions
    Simply not knowing something
    Pretheoretic explicitness
    Coherence and internal sharing of elements
    Explication
    Implicitness
  Correlations
    Explicitness
    Possession
    Access
    Modelability
    Gemini modelability
    Coherence
    Generators
    Dark matter
    Diasystemic novelty
    Subject to honesty
    Conceptual Doppelgängers
  A wish
None
No comments

[Metadata: crossposted from https://tsvibt.blogspot.com/2023/03/explicitness.html. First completed March 3, 2023.]

Explicitness is out-foldedness. An element of a mind is explicit when it is available to relate to other elements when suitable.

Thanks to Sam Eisenstat for related conversations.

Note: The ideas of explicitness and inexplicitness require more explication.

Explicitness and inexplicitness

Elements can be more or less explicit, less or more inexplicit.

Explicitizing

Elements can become more explicit.

A diagram:

Examples

An example of explicitizing also furnishes examples of inexplicitness (before the explicitizing) and explicitness (after the explicitizing), and likewise an example of inexplicitizing also furnishes examples of explicitness and inexplicitness.

Classes of examples of explicitizing

Examples of inexplicitness and inexplicitizing

The axiom of choice

Chapter 1, "The Prehistory of the Axiom of Choice", in Gregory H. Moore's book Zermelo's Axiom of Choice (Libgen):

[...] Cantor made an infinite sequence of arbitrary choices for which no rule was possible, and consequently the Denumerable Axiom was required for the first time. Nevertheless, Cantor did not recognize the impossibility of specifying such a rule, nor did he understand the watershed which he had crossed. After that date, analysts and algebraists increasingly used such arbitrary choices without remarking that an important but hidden assumption was involved. From this fourth stage emerged Zermelo's solution to the Well-Ordering Problem and his explicit formulation of the Axiom of Choice.

That chapter describes stages of inexplicit uses of arguments spiritually related to the axiom of choice. Zermelo's work made the essential uses explicit. That opened up the possibility of further investigation building on the idea of the axiom of choice. E.g. the axiom was analyzed in the reverse-mathematical spirit, revealing which theorems require the axiom; and reactions against the axiom contributed to intuitionism.

For another example of making explicit an idea that had been inexplicitly used, see Reinhardt's article "Remarks on reflection principles, large cardinals and elementary embeddings", in Axiomatic Set Theory volume 2 (Libgen).

Group theory from concrete transformations

Two of the main tributaries into group theory were permutation groups of roots of polynomials, and symmetry groups of geometric spaces. Galois related the solvability of polynomial equations to the structure of the group of permutations of the polynomial's roots that preserve algebraic equations. Klein's Erlangen program related structures studied in a geometric space to the transformations of that space that preserve those structures.

Both of these uses of the idea of a (transformation) group are contextual. The groups are thought of in terms of the particulars of the objects they transform——sets of roots of polynomials, or geometric spaces. The relationship between these theories aren't yet explicit. The development of group theory makes the common structure explicit, allowing general results to apply to both cases.

For another rich example of a generally applicable idea congealing from its appearances in concrete contexts, see "The concept of function up to the middle of the 19th century" by Adolph-Andrei Pavlovich Youschkevitch (pdf). Note that abstraction is a gain of content, not a loss of content (extraction is a pure loss of content).

Other distinctions

Simply not knowing something

If a mind doesn't know X, then X is maximally inexplicit for the mind.

Pretheoretic explicitness

Pretheoretically, it seems possible to know something explicitly but not implicitly, or to lack some implicit knowledge. Examples:

I'm able to technically define the terms in the expression, but I "don't really know what the expression means". Even though the expression is perfectly explicit, for me the expression is very far from being readily combinable with other elements of my mind. I certainly don't immediately conclude or even understand propositions like the Lefschetz fixed-point theorem.

The concept of explicitness in this essay takes all of these to be undifferentiated examples of partial inexplicitness. There's no such thing as "non-explicit understanding", other than explicit (partial) understanding that hasn't been made fully explicit in every way. If I were to play around with the Lefschetz formula and "get some intuition for what it means", that's just another instance of explicitizing.

The pretheoretic notion of "implicit understanding" or "non-explicit understanding" might be reducible to implications of the form: if the mental element is explicit in the manner X, then the mental element is explicit in the manner Y. Then a "non-explicit" element is an element that sits within a mind in a manner that is implied by most other manners of sitting within a mind, and that does not imply many other manners of sitting within a mind.

These implications are vague about their assumptions, and intuitively being told an explicit formula is a violation of the implication. Since I didn't come up with the Lefschetz formula, I got an understanding of it "in the wrong order". This tends to happen when there are other minds, because an other mind can get the understanding in the right order and then transmit a formula that is fully explicit for that mind, though the formula won't be fully explicit for the receiver.

It's also possible to arrive at a simple, explicit formula de novo via algebraic calculation, and only then rationalize the formula in a way that connects more to preexisting mental elements. Is that "in the wrong order"? The situation might be that this "in the wrong order", and the pretheoretic notion of "non-explicit" elements, are really imprecise perceptual categories meant to pragmatically track the implications between explicitnesses, e.g. to track what tasks to expect a given element to be adequate or inadequate for. "Non-explicit" elements might be elements possessed (that is, elements that empower the mind) without being fully explicit, and "explicit but not implicit" elements might be elements grasped in some way but not possessed (such as an "explicit" formula, without the understanding needed to usefully apply it).

Coherence and internal sharing of elements

Internal sharing of elements is a description of coherence in terms of whether elements are interoperating with each other suitably. Coherence is related to explicitness as actualizing is related to possibilizing. Coherence is actual interoperation, actual capabilities, actual efficiencies, actual connections; explicitness is the feasibility of interoperation and connection. In short: to explicitize is to possibilize coherence.

For example, building an index doesn't by itself constitute performing a new (external) task. But having an index renders feasible some operations that were previously infeasible. Parathesizers put elements alongside each other, not necessarily synthesizing them, but making it possible for them to be synthesized.

Explication

Carnap's explication is a kind of explicitizing. Storing something in memory is explicitizing but not explication.

Implicitness

Strict implicitness in the logical sense is when a proposition is implied by a set of propositions, but isn't already included in that set (explicitly). Instances of strict implicitness are also instances of inexplicitness: the implied proposition, if made explicit, would enable further operations.

Example: "What I said implies...". This implicitness is inexplicitness that can be resolved (explicitized) by deduction.

Example: "Implicit in the concept of bachelor is unmarriedness.". Statements like "Bob is a bachelor." have inexplicitness that can again be resolved by deduction: "...and therefore Bob is unmarried.". Evenness is implicit in the concept of divisibility by four. The fact that is implicit in the ideas of 3, 4, and .

See also the notion of analyticity, and Critch's discussion of implicitness [LW(p) · GW(p)].

Correlations

Explicitness

Explicitnesses correlate with explicitnesses. That is, "you can't eat just one": explicitizing an element in one way (making it available for relating with one other element) tends to also explicitize it in other ways (making it available for relating with multiple other elements).

The "proportional explicitness" of an element (the proportion of elements in the mind that the element is available to relate to) might not approach 1 in the long-run. E.g., if there is always more parasystemic novelty, then there are always regions of the mind that are not well-integrated or well-integratable with a given element. Essential non-cartesianness might imply that there is always more parasystemic novelty.

Possession

A mind possesses an element to the extent that the mind is able to do those tasks that the element enables in some mind. (So possession is "coherence, localized to one element".)

Access

The pretheoretic idea of accessing an element E is maybe a projection of the idea of explicitness into the subspace that assumes that all elements are fixed, and all that changes is lines of communication.

Modelability

If an element E is explicitized in a mind M, the field of elements that E can relate to is expanded. Since explicitnesses correlate with each other, expanding the field of E-relatable elements in M tends to also expand the field of E-relatable elements in another mind M'. So there's more "surface area" for M' to understand E.

This may be false in the long-run if there are different cognitive realms. E.g. if the languages of thought of two minds M and M' permanently diverge further and further, then explicitizing an element in M might not explicitize the element in M'.

Gemini modelability

If an element E is explicitized in a mind M, the field of elements E can relate to is expanded. Expanding the field of elements relatable to E has many effects on how feasible it is for another mind to gemini model E in M. But, as a broad tendency, explicitizing E in M makes E in M more gemini modelable. The field of relatable elements approaches the total field of possibly relatable elements, which is canonical and therefore shared between many minds. The way that E will ongoingly show itself in M is circumscribed by the field of relatable elements of E in M. So if the field of relatable elements of E in M is more canonical, then the way that E will ongoingly show itself in M is at least less forced, by circumscription into disjoint regions, to be distinct from the way that E will ongoingly show itself in some other mind M'.

Coherence

If explicitness is possibilized coherence, then coherence (actualizing some suitable relations between elements) implies explicitness (that those relations are possible).

On the other hand, explicitness isn't only coherence. Take the example given above where computer code is rewritten so that a new task can be performed, but so that the code is less well-factored. It may be in this case that explicitness almost strictly decreases (some explicitness is lost, and maybe only a single interface is added), while coherence strictly increases (because a new task can be performed).

Generators

Generators of capabilities seem to leave a lot of inexplicitness compared to some other elements. I don't know why. If it's so:

Dark matter

Dark matter is structure that is inexplicit, but that is known to exist because of its visible effects. Even if we can't see it, it must be there. Dark matter is not fully inexplicit, or it wouldn't be possessed, and therefore wouldn't have visible effects.

For example, we can listen to set theorists talking in their special language, and we might even follow some of their thoughts. But we don't know the intuitions and refinement processes that led them to conjecture and then codify concepts and propositions (unless, say, Penelope Maddy distills them and writes them down). We know that those intuitions are there, though, if we dimly perceive some order and rhyme to their thinking, and can verify that their proofs are correct and non-obvious.

Diasystemic novelty

As noted earlier, diasystemic novelty tends to inexplicitize. Diasystemic novelty also tends to be inexplicit. A novel element E is diasystemic when it is very relevant to the mind, but doesn't interface in preexisting ways with preexisting elements of the mind.

Subject to honesty

If an element is very explicit, then it can be spoken honestly about: the ways that the element exerts itself in the mind can be reported with intent to expose, without distortion, everything relevant. It can also be lied about.

If an element is very inexplicit, then the ways it exerts itself can't be reported because they aren't available to be expressed. So the intent to expose without distortion becomes irrelevant because impotent. (This is an "instantaneous" notion of honesty. The full normative notion of honesty also includes the tendency toward explicitization rather than inexplicitization.)

Conceptual Doppelgängers

The existence of conceptual Doppelgängers requires inexplicitness. At least, the overlapping functions shared by two elements are less available to be predicted and modified in one fell swoop, because they aren't factored out from the two elements into non-repetitive elements.

On the other hand, if participation of elements in a Thing is well-indexed, then there effectively aren't conceptual Doppelgängers at least in the strongest sense: observing one element at least points the observer to the other elements that serve overlapping functions, so at least the presence of an analogy is made explicit.

More generally than duplicates, there are "crosshatch Doppelgängers": a set of elements that combine to play some roles that overlap with roles playable by combinations from another distinct set of elements. For example, a function can be rewritten using different primitives or a different factorization. Another example: the primordial ooze of category theory. Another example: rewriting a sentence to use different words, or translating between languages.

A wish

It would be nice to have a situation like this: the elements of the mind are explicit. This is how the mind understands this Thing. This element in the mind goes to the heart, the center of the Thing it's supposed to bring into the mind. It's explicit, unfolded, laid out, and so the word attached to this element is the word for this Thing in the language of this mind. When this mind's thinking relates to this Thing, it uses this word. What this mind knows about this Thing activates and is activated by this word, and is exactly what is indexed this word or brain chunk. Every element is easily understood as doing X and only X [LW · GW] for some X. (This picture is improbable, e.g. because of crosshatch Doppelgängers.)

0 comments

Comments sorted by top scores.