How should we think about the decision relevance of models estimating p(doom)?

post by Mo Putera (Mo Nastri) · 2023-05-11T04:16:56.211Z · LW · GW · No comments

This is a question post.

Contents

  Answers
    8 zeshen
None
No comments

To illustrate what I mean, switching from p(doom) to timelines: 

Question: Is there something like this for p(doom) estimates? More specifically, following the above points as pushback against the strawman(?) that "p(doom) discourse, including rigorous modeling of it, is overrated":

  1. What concrete high-level actions do most alignment researchers agree are influenced by p(doom) estimates, and would benefit from more rigorous modeling (vs just best guesses, even by top researchers e.g. Paul Christiano's views [LW · GW])?
  2. What's the right level of granularity for estimating p(doom) from a decision-relevant perspective? Is it just a single bit ("below or above some threshold X%") like estimating timelines for AI governance strategy, or OOM (e.g. 0.1% vs 1% vs 10% vs >50%), or something else?
    • I suppose the easy answer is "the granularity depends on who's deciding, what decisions need making, in what contexts", but I'm in the dark as to concrete examples of those parameters (granularity i.e. thresholds, contexts, key actors, decisions)
    • e.g. reading Joe Carlsmith's personal update from ~5% to >10% I'm unsure if this changes his recommendations at all, or even his conclusion – he writes that "my main point here, though, isn't the specific numbers... [but rather that] here is a disturbingly substantive risk that we (or our children) live to see humanity as a whole permanently and involuntarily disempowered by AI systems we’ve lost control over", which would've been true for both 5% and 10%

Or is this whole line of questioning simply misguided or irrelevant? 


Some writings I've seen gesturing in this direction:


This question was mainly motivated by my attempt to figure out what to make of people's widely-varying p(doom) estimates, e.g. in the appendix section of Apart Research's website, beyond simply "there is no consensus on p(doom)". I suppose one can argue that rigorous p(doom) modeling helps reduce disagreement on intuition-driven estimates by clarifying cruxes or deconfusing concepts, thereby improving confidence and coordination on what to do, but in practice I'm unsure if this is the case (reading e.g. the public discussion around the p(doom) modeling by Carlsmith, Froolow, etc), so I'm not sure I buy this argument, hence my asking for concrete examples.

Answers

answer by zeshen · 2023-05-11T07:02:42.205Z · LW(p) · GW(p)

Why is this question getting downvoted?

No comments

Comments sorted by top scores.