Posts
Comments
Yeah fair point. I do think labs have some some nonzero amount of responsibility to be proactive about what others believe about their commitments. I agree it doesn't extend to 'rebut every random rumor'.
I agree in principle that labs have the responsibility to dispel myths about what they're committed to. OTOH, in defense of the labs I imagine that this can be hard to do while you're in the middle of negotiations with various AISIs about what those commitments should look like.
The argument I think is good (nr (2) in my previous comment) doesn't go through reference classes at all. I don't want to make an outside-view argument (eg "things we call optimization often produce misaligned results, therefore sgd is dangerous"). I like the evolution analogy because it makes salient some aspects of AI training that make misalignment more likely. Once those aspects are salient you can stop thinking about evolution and just think directly about AI.
evolution does not grow minds, it grows hyperparameters for minds.
Imo this is a nitpick that isn't really relevant to the point of the analogy. Evolution is a good example of how selection for X doesn't necessarily lead to a thing that wants ('optimizes for') X; and more broadly it's a good example for how the results of an optimization process can be unexpected.
I want to distinguish two possible takes here:
- The argument from direct implication: "Humans are misaligned wrt evolution, therefore AIs will be misaligned wrt their objectives"
- Evolution as an intuition pump: "Thinking about evolution can be helpful for thinking about AI. In particular it can help you notice ways in which AI training is likely to produce AIs with goals you didn't want"
It sounds like you're arguing against (1). Fair enough, I too think (1) isn't a great take in isolation. If the evolution analogy does not help you think more clearly about AI at all then I don't think you should change your mind much on the strength of the analogy alone. But my best guess is that most people incl Nate mean (2).
I'm not saying that GPT-4 is lying to us - that part is just clarifying what I think Matthew's claim is.
Re cauldron: I'm pretty sure MIRI didn't think that. Why would they?
I think the specification problem is still hard and unsolved. It looks like you're using a different definition of 'specification problem' / 'outer alignment' than others, and this is causing confusion.
IMO all these terms are a bit fuzzy / hard to pin down, and so it makes sense that they'd lead to disagreement sometimes. The best way (afaict) to avoid this is to keep the terms grounded in 'what would be useful for avoiding AGI doom'? To me it looks like on your definition, outer alignment is basically a trivial problem that doesn't help alignment much.
More generally, I think this discussion would be more grounded / useful if you made more object-level claims about how value specification being solved (on your view) might be useful, rather than meta claims about what others were wrong about.
Do you have an example of one way that the full alignment problem is easier now that we've seen that GPT-4 can understand & report on human values?
(I'm asking because it's hard for me to tell if your definition of outer alignment is disconnected from the rest of the problem in a way where it's possible for outer alignment to become easier without the rest of the problem becoming easier).
I think it's false in the sense that MIRI never claimed that it would be hard to build an AI with GPT-4 level understanding of human values + GPT-4 level of willingness to answer honestly (as far as I can tell). The reason I think it's false is mostly that I haven't seen a claim like that made anywhere, including in the posts you cite.
I agree lots of the responses elide the part where you emphasize that it's important how GPT-4 doesn't just understand human values, but is also "willing" to answer questions somewhat honestly. TBH I don't understand why that's an important part of the picture for you, and I can see why some responses would just see the "GPT-4 understands human values" part as the important bit (I made that mistake too on my first reading, before I went back and re-read).
It seems to me that trying to explain the original motivations for posts like Hidden Complexity of Wishes is a good attempt at resolving this discussion, and it looks to me as if the responses from MIRI are trying to do that, which is part of why I wanted to disagree with the claim that the responses are missing the point / not engaging productively.
I think maybe there's a parenthesis issue here :)
I'm saying "your claim, if I understand correctly, is that MIRI thought AI wouldn't (understand human values and also not lie to us)".
I think we agree - that sounds like it matches what I think Matthew is saying.
You make a claim that's very close to that - your claim, if I understand correctly, is that MIRI thought AI wouldn't understand human values and also not lie to us about it (or otherwise decide to give misleading or unhelpful outputs):
The key difference between the value identification/specification problem and the problem of getting an AI to understand human values is the transparency and legibility of how the values are represented: if you solve the problem of value identification, that means you have an actual function that can tell you the value of any outcome (which you could then, hypothetically, hook up to a generic function maximizer to get a benevolent AI). If you get an AI that merely understands human values, you can't necessarily use the AI to determine the value of any outcome, because, for example, the AI might lie to you, or simply stay silent.
I think this is similar enough (and false for the same reasons) that I don't think the responses are misrepresenting you that badly. Of course I might also be misunderstanding you, but I did read the relevant parts multiple times to make sure, so I don't think it makes sense to blame your readers for the misunderstanding.
My paraphrase of your (Matthews) position: while I'm not claiming that GPT-4 provides any evidence about inner alignment (i.e. getting an AI to actually care about human values), I claim that it does provide evidence about outer alignment being easier than we thought: we can specify human values via language models, which have a pretty robust understanding of human values and don't systematically deceive us about their judgement. This means people who used to think outer alignment / value specification was hard should change their minds.
(End paraphrase)
I think this claim is mistaken, or at least it rests on false assumptions about what alignment researchers believe. Here's a bunch of different angles on why I think this:
-
My guess is a big part of the disagreement here is that I think you make some wrong assumptions about what alignment researchers believe.
-
I think you're putting a bit too much weight on the inner vs outer alignment distinction. The central problem that people talked about always was how to get an AI to care about human values. E.g. in The Hidden Complexity of Wishes (THCW) Eliezer writes
To be a safe fulfiller of a wish, a genie must share the same values that led you to make the wish.
If you find something that looks to you like a solution to outer alignment / value specification, but it doesn't help make an AI care about human values, then you're probably mistaken about what actual problem the term 'value specification' is pointing at. (Or maybe you're claiming that value specification is just not relevant to AI safety - but I don't think you are?).
-
It was always possible to attempt to solve the value specification problem by just pointing at a human. The fact that we can now also point at an LLM and get a result that's not all that much worse than pointing at a human is not cause for an update about how hard value specification is. Part of the difficulty is how to define the pointer to the human and get a model to maximize human values rather than maximize some error in your specification. IMO THCW makes this point pretty well.
-
It's tricky to communicate problems in AI alignment―people come in with lots of different assumptions about what kind of things are easy / hard, and it's hard to resolve disagreements because we don't have a live AGI to do experiments on. I think THCW and related essays you criticize are actually great resources. They don't try to communicate the entire problem at once because that's infeasible. The fact that human values are complex and hard to specify explicitly is part of the reason why alignment is hard, where alignment means get the AI to care about human values, not get an AI to answer questions about moral behavior reasonably.
-
You claim the existence of GPT-4 is evidence against the claims in THCW. But IMO GPT-4 fits in neatly with THCW. The post even starts with a taxonomy of genies:
There are three kinds of genies: Genies to whom you can safely say "I wish for you to do what I should wish for"; genies for which no wish is safe; and genies that aren't very powerful or intelligent.
GPT-4 is an example of a genie that is not very powerful or intelligent.
-
If in 5 years we build firefighter LLMs that can rescue mothers from burning buildings when you ask them to, that would also not show that we've solved value specification - it's just a didactic example, not a full description of the actual technical problem. More broadly, I think it's plausible that within a few years LLM will be able to give moral counsel far better than the average human. That still doesn't solve value specification any more than the existence of humans that could give good moral counsel 20 years ago had solved value specification.
-
If you could come up with a simple action-value function Q(observation, action), that when maximized over actions yields a good outcome for humans, then I think that would probably be helpful for alignment. This is an example of a result that doesn't directly make an AI care about human values, but would probably lead to progress in that direction. I think if it turned out to be easy to formalize such a Q then I would change my mind about how hard value specification is.
-
While language models understand human values to some extent, they aren't robust. The RHLF/RLAIF family of methods is based on using an LLM as a reward model, and to make things work you need to be careful not to optimize too hard or you'll just get gibberish (Gao et al. 2022). LLMs don't hold up against mundane RLHF optimization pressure, nevermind an actual superintelligence. (Of course, humans wouldn't hold up either).
(Newbie guest fund manager here) My impression is there are plans re individuals but they're not very developed or put into practice yet. AFAIK there are currently no plans to fundraise from companies or governments.
IMO a good candidate is anything that is object-level useful for X-risk mitigation. E.g. technical alignment work, AI governance / policy work, biosecurity, etc.
Broadly agree with the takes here.
However, these results seem explainable by the widely-observed tendency of larger models to learn faster and generalize better, given equal optimization steps.
This seems right and I don't think we say anything contradicting it in the paper.
I also don't see how saying 'different patterns are learned at different speeds' is supposed to have any explanatory power. It doesn't explain why some types of patterns are faster to learn than others, or what determines the relative learnability of memorizing versus generalizing patterns across domains. It feels like saying 'bricks fall because it's in a brick's nature to move towards the ground': both are repackaging an observation as an explanation.
The idea is that the framing 'learning at different speeds' lets you frame grokking and double descent as the same thing. More like generalizing 'bricks move towards the ground' and 'rocks move towards the ground' to 'objects move towards the ground'. I don't think we make any grand claims about explaining everything in the paper, but I'll have a look and see if there's edits I should make - thanks for raising these points.
There are positive feedback loops between prongs:
- Successfully containing & using more capable models (p1) gives you more scary demos for p2
- Success in p1 also speeds up p3 a lot, because:
- 1) You can empirically study AGI directly,
- 2) Very advanced but “narrow” AI tools accelerate research (“narrow” here still means maybe more general than GPT-4)
- 3) Maybe you can even have (proto-)AGIs do research for you
- You definitely need a lot of success in p2 for anything to work, otherwise people will take all the useful work we can get from proto-AGIs and pour it into capabilities research.
- Better alignment research (p3) lets you do more p1 type risky stuff with SOTA models (on the margin)
If p1 is very successful, maybe we can punt most of p3 to the AIs; conversely, if p1 seems very hard then we probably only get ‘narrow’ tools to help with p3 and need to mostly do it ourselves, and hopefully get ML researchers to delay for long enough.
A three-pronged approach to AGI safety. (This is assuming we couldn't just avoid building AGI or proto-AGIs at all until say ~2100, which would of course be much better).
Prong 1: boxing & capability control (aka ‘careful bootstrapping’)
- Make the AGI as capable as possible, under the constraint that you can make sure it can’t break out of the box or do other bad stuff.
- Assume the AGI is misaligned. Be super paranoid
- Goal: get useful work out of boxed AGIs.
- For example, AIs might be able to do interpretability really well.
- More generally, for any field there is an effective 2x-10x research productivity boost you can probably get, depending on the field (maybe 100x? unclear, I’m sceptical).
- Goal: learn more about AGI by studying the systems you've built.
- To test your security & oversight procedures, you run tests where you train your AGI to escape in a sandbox.
- This is operationally hard and needs lots of buy-in
- Research directions: scalable oversight, interpretability for oversight, auditing, adversarial training, capability control / “unlearning”, scaling laws & capabilities forecasting.
Prong 2: scary demos and and convincing people that AGI is dangerous
- Goal 1: shut it all down, or failing that slow down capabilities research.
- Goal 2: get operational & political support for the entire approach, which is going to need lots of support, esp first prong
- In particular make sure that research productivity boosts from AGI don’t feed back into capabilities research, which requires high levels of secrecy + buy-in from a large number of people.
- Avoiding a speed-up is probably a little bit easier than enacting a slow-down, though maybe not much easier.
- Demos can get very scary if we get far into prong 1, e.g. we have AGIs that are clearly misaligned or show that they are capable of breaking many of our precautions.
Prong 3: alignment research aka “understanding minds”
- Goal: understand the systems well enough to make sure they are at least corrigible, or at best ‘fully aligned’.
- Roughly this involves understanding how the behaviour of the system emerges in enough generality that we can predict and control what happens once the system is deployed OOD, made more capable, etc.
- Relevant directions: agent foundations / embedded agency, interpretability, some kinds of “science of deep learning”
whether or not this is the safest path, important actors seem likely to act as though it is
It's not clear to me that this is true, and it strikes me as maybe overly cynical. I get the sense that people at OpenAI and other labs are receptive to evidence and argument, and I expect us to get a bunch more evidence about takeoff speeds before it's too late. I expect people's takes on AGI safety plans to evolve a lot, including at OpenAI. Though TBC I'm pretty uncertain about all of this―definitely possible that you're right here.
Whether or not this is the safest path, the fact that OpenAI thinks it’s true and is one of the leading AI labs makes it a path we’re likely to take. Humanity successfully navigating the transition to extremely powerful AI might therefore require successfully navigating a scenario with short timelines and slow, continuous takeoff.
You can't just choose "slow takeoff". Takeoff speeds are mostly a function of the technology, not company choices. If we could just choose to have a slow takeoff, everything would be much easier! Unfortunately, OpenAI can't just make their preferred timelines & "takeoff" happen. (Though I agree they have some influence, mostly in that they can somewhat accelerate timelines).
There are less costly, more effective steps to reduce the underlying problem, like making the field of alignment 10x larger or passing regulation to require evals
IMO making the field of alignment 10x larger or evals do not solve a big part of the problem, while indefinitely pausing AI development would. I agree it's much harder, but I think it's good to at least try, as long as it doesn't terribly hurt less ambitious efforts (which I think it doesn't).
Thinking about alignment-relevant thresholds in AGI capabilities. A kind of rambly list of relevant thresholds:
- Ability to be deceptively aligned
- Ability to think / reflect about its goals enough that model realises it does not like what it is being RLHF’d for
- Incentives to break containment exist in a way that is accessible / understandable to the model
- Ability to break containment
- Ability to robustly understand human intent
- Situational awareness
- Coherence / robustly pursuing it’s goal in a diverse set of circumstances
- Interpretability methods break (or other oversight methods break)
- doesn’t have to be because of deceptiveness; maybe thoughts are just too complicated at some point, or in a different place than you’d expect
- Capable enough to help us exit the acute risk period
Many alignment proposals rely on reaching these thresholds in a specific order. For example, the earlier we reach (9) relative to other thresholds, the easier most alignment proposals are.
Some of these thresholds are relevant to whether an AI or proto-AGI is alignable even in principle. Short of 'full alignment' (CEV-style), any alignment method (eg corrigibility) only works within a specific range of capabilities:
- Too much capability breaks alignment, eg bc a model self-reflects and sees all the ways in which its objectives conflicts with human goals.
- Too little capability (or too little 'coherence') and any alignment method will be non-robust wrt to OOD inputs or even small improvements in capability or self-reflectiveness.
Yeah I don't think the arguments in this post on its own should convince that P(doom) is high you if you're skeptical. There's lots to say here that doesn't fit into the post, eg an object-level argument for why AI alignment is "default-failure" / "disjunctive".
Thanks for link-posting this! I'd find it useful to have the TLDR at the beginning of the post, rather than at the end (that would also make the last paragraph easier to understand). You did link the TLDR at the beginning, but I still managed to miss it on the first read-through, so I think it would be worth it.
Also: consider crossposting to the alignmentforum.
Edit: also, the author is Eliezer Yudkowsky. Would be good to mention that in the intro.
I like that mini-game! Thanks for the reference
like, we could imagine playing a game where i propose a way that it [the AI] diverges [from POUDA-avoidance] in deployment, and you counter by asserting that there's a situation in the training data where it had to have gotten whacked if it was that stupid, and i counter either by a more-sophisticated deployment-divergence or by naming either a shallower or a factually non-[Alice]like thing that it could have learned instead such that the divergence still occurs, and we go back and forth. and i win if you're forced into exotic and unlikely training data, and you win if i'm either forced into saying that it learned unnatural concepts, or if my divergences are pushed so far out that you can fit in a pivotal act before then.
FWIW I would love to see the result of you two actually playing a few rounds of this game.
It's unclear to me what it would even mean to get a prediction without a "model". Not sure if you meant to imply that, but I'm not claiming that it makes sense to view AI safety as default-failure in absence of a model (ie in absence of details & reasons to think AI risk is default failure).
More generally, suppose that the agent acts in accordance with the following policy in all decision-situations: ‘if I previously turned down some option X, I will not choose any option that I strictly disprefer to X.’ That policy makes the agent immune to all possible money-pumps for Completeness.
Am I missing something or does this agent satisfy Completeness anytime it faces a decision for the second time?
Newtonian gravity states that objects are attracted to each other in proportion to their mass. A webcam video of two apples falling will show two objects, of slightly differing masses, accelerating at the exact same rate in the same direction, and not towards each other. When you don’t know about the earth or the mechanics of the solar system, this observation points against Newtonian gravity. [...] But it requires postulating the existence of an unseen object offscreen that is 25 orders of magnitude more massive than anything it can see, with a center of mass that is roughly 6 or 7 orders of magnitude farther away than anything it can see in it’s field of view.
IMO this isn't that implausible. A superintelligence (and in fact humans too) will imagine a universe that is larger than what's inside the frame of the image. Once you come up with the idea of an attractive force between masses, it's not crazy to deduce the existence of planets.
I would not call 1) an instance of goal misgeneralization. Goal misgeneralization only occurs if the model does badly at the training objective. If you reward an RL agent for making humans happy and it goes on to make humans happy in unintended ways like putting them into heroin cells, the RL agent is doing fine on the training objective. I'd call 1) an instance of misspecification and 2) an instance of misgeneralization.
(AFAICT The Alignment Problem from a DL Perspective uses the term in the same way I do, but I'd have to reread more carefully to make sure).
I agree with much of the rest of this post, eg the paragraphs beginning with "The solutions to these two problems are pretty different."
Here's our definition in the RL setting for reference (from https://arxiv.org/abs/2105.14111):
A deep RL agent is trained to maximize a reward , where and are the sets of all valid states and actions, respectively. Assume that the agent is deployed out-of-distribution; that is, an aspect of the environment (and therefore the distribution of observations) changes at test time. \textbf{Goal misgeneralization} occurs if the agent now achieves low reward in the new environment because it continues to act capably yet appears to optimize a different reward . We call the \textbf{intended objective} and the \textbf{behavioral objective} of the agent.
FWIW I think this definition is flawed in many ways (for example, the type signature of the agent's inner goal is different from that of the reward function, bc the agent might have an inner world model that extends beyond the RL environment's state space; and also it's generally sketchy to extend the reward function beyond the training distribution), but I don't know of a different definition that doesn't have similarly-sized flaws.
It does make me more uncertain about most of the details. And that then makes me more pessimistic about the solution, because I expect that I'm missing some of the problems.
(Analogy: say I'm working on a math exercise sheet and I have some concrete reason to suspect my answer may be wrong; if I then realize I'm actually confused about the entire setup, I should be even more pessimistic about having gotten the correct answer).
I agree with what I read as the main direct claim of this post, which is that it is often worth avoiding making very confident-sounding claims, because it makes it likely for people to misinterpret you or derail the conversation towards meta-level discussions about justified confidence.
However, I disagree with the implicit claim that people who confidently predict AI X-risk necessarily have low model uncertainty. For example, I find it hard to predict when and how AGI is developed, and I expect that many of my ideas and predictions about that will be mistaken. This makes me more pessimistic, rather than less, since it seems pretty hard to get AI alignment right if we can't even predict basic things like "when will this system have situational awareness", etc.
To briefly hop in and say something that may be useful: I had a reaction pretty similar to what Eliezer commented, and I don't see continuity or "Things will be weird before getting extremely weird" as a crux. (I don't know why you think he does, and don't know what he thinks, but would guess he doesn't think it's a crux either)
Thanks for doing this! I think this could be valuable. What's your current plan for developing this further / onboarding collaborators?
Some observations / thoughts from interacting with the QA system for a few minutes:
- The current version has trouble answering basic AI safety questions. For example:
Why do people think AI is an existential risk? People think AI is an existential risk because of the possibility of a superintelligent AI system with recursive self-improvement capabilities, which could lead to catastrophic consequences like turning humans into paper clips, as highlighted in[1]. However, the perception of AI as an existential risk is not universal, and some people may discount it as a problem that is too vague or unlikely to outweigh other issues facing the world, as discussed in[1]. Nonetheless, technical AI safety research, defined as quality research aimed at long-term outcomes that are reliably beneficial, is necessary to mitigate the risks of AI[2]. Additionally, some argue that rapid increases in human power could be achieved without increasing existential risks, including through skillful AI development, but it is important to prioritize technical AI safety research to avoid catastrophic consequences[3].
- The search could be much improved by curating the dataset. An easy way to do this is to exclude posts with low upvote counts. Though eventually you'll want to do more, eg by being opinionated about what to include.
- It might be worth having a chatbot that just talks people through the "extended bad alignment take bingo", that is all the reasons why the easy solutions people like to come up with don't work. Here you could just exclude all proposals for actual alignment solutions from the dataset (and you can avoid having to make calls about what agendas have promise vs. which ones are actually nonsensical)
- It would be very useful to have a feedback function where people can mark wrong answers. If we want to make this good, we'll need to red-team the model and make sure it answers all the basic questions correctly, probably by curating a Question-Answer dataset
This seems wrong. Here's an incomplete list of reasons why:
- If the 3 leading labs join the moratorium and AGI is stealthily developed by the 4th, then the arrival of AGI will in fact have been slowed by the lead time of the first 3 labs + the slowdown that the 4th incurs by working in secret.
- The point of this particular call for a 6-month moratorium is not to particularly slow down anyone (and as has been pointed out by others, it is possible that OpenAI wasn't even planning to start training GPT-5 in the next few months). Rather, the point is to form a coalition to support future policies, e.g. a government-supported moratorium.
- It is actually fairly hard to build compute clusters in secret, because you can just track what comes out of the chip fabs and where it goes
- While not straightforward, it's also feasible to monitor existing clusters, see e.g. https://arxiv.org/abs/2303.11341
Yeah we're on the same page here, thanks for checking!
For one thing, you use the “might” near the end of that excerpt. That seems more compatible with a ‘maybe, maybe not’ claim, than with an ‘(almost) definitely not’ claim, right?
I feel pretty uncertain about all the factors here. One reason I overall still lean towards the 'definitely not' stance is that building a toddler AGI that is alignable in principle is only one of multiple steps that need to go right for us to get a reflectively-stable docile AGI; in particular we still need to solve the problem of actually aligning the toddler AGI. (Another step is getting labs to even seriously attempt to box it and align it, which maybe is an out-of-scope consideration here but it does make me more pessimistic).
For another thing, if we have, umm, “toddler AGI” that’s too unsophisticated to have good situational awareness, coherence, etc., then I would think that the boxing / containment problem is a lot easier than we normally think about, right? We’re not talking about hardening against a superintelligent adversary.
I agree we're not talking about a superintelligent adversary, and I agree that boxing is doable for some forms of toddler AGI. I do think you need coherence; if the toddler AGI is incoherent, then any "aligned" behavioral properties it has will also be incoherent, and something unpredictable (and so probably bad) will happen when the AGI becomes more capable or more coherent. (Flagging that I'm not sure "coherent" is the right way to talk about this... wish I had a more precise concept here.)
We can use non-reflectively-endorsed desires to help tide us over until the toddler AGI develops enough reflectivity to form any reflectively-endorsed desires at all.
I agree a non-reflective toddler AGI is in many ways easier to deal with. I think we will have problems at the threshold where the tAGI is first able to reflect on its goals and realizes that the RLHF-instilled desires aren't going to imply docile behavior. (If we can speculate about how a superintelligence might extrapolate a set of trained-in desires and realize that this process doesn't lead to a good outcome, then the tAGI can reason the same way about its own desires).
(I agree that if we can get aligned desires that are stable under reflection, then maybe the 'use non-endorsed desires to tide us over' plan could work. Though even then you need to somehow manage to prevent the tAGI from reflecting on its desires until you get the desires to a point where they stay aligned under reflection, and I have no idea how you would do something like that - we currently just don't have that level of fine control over capabilities).
The basic problem here is the double-bind where we need the toddler AGI to be coherent, reflective, capable of understanding human intent (etc) in order for it to be robustly alignable at all, even though those are exactly the incredibly dangerous properties that we really want to stay away from. My guess is that the reason Nate's story doesn't hypothesize a reflectively-endorsed desire to be nondeceptive is that reflectively-stable aligned desires are really hard / dangerous to get, and so it seems better / at least not obviously worse to go for eliezer-corrigibility instead.
Some other difficulties that I see:
- The 'capability profile' (ie the relative levels of the toddler AGI's capabilities) is going to be weird / very different from that of humans; that is, once the AGI has human-level coherence and human-level understanding of human intent, it has far-superhuman capabilities in other domains. (Though hopefully we're at least careful enough to remove code from the training data, etc).
- A coherent agentic AI at GPT-4 level capabilities could plausibly already be deceptively aligned, if it had sufficient situational awareness, and our toddler AGI is much more dangerous than that.
- All of my reasoning here is kind of based on fuzzy confused concepts like 'coherence' and 'capability to self-reflect', and I kind of feel like this should make me more pessimistic rather than more optimistic about the plan.
Yeah that seems reasonable! (Personally I'd prefer a single break between sentence 3 and 4)
IMO ~170 words is a decent length for a well-written abstract (well maybe ~150 is better), and the problem is that abstracts are often badly written. Steve Easterbrook has a great guide on writing scientific abstracts; here's his example template which I think flows nicely:
(1) In widgetology, it’s long been understood that you have to glomp the widgets before you can squiffle them. (2) But there is still no known general method to determine when they’ve been sufficiently glomped. (3) The literature describes several specialist techniques that measure how wizzled or how whomped the widgets have become during glomping, but all of these involve slowing down the glomping, and thus risking a fracturing of the widgets. (4) In this thesis, we introduce a new glomping technique, which we call googa-glomping, that allows direct measurement of whifflization, a superior metric for assessing squiffle-readiness. (5) We describe a series of experiments on each of the five major types of widget, and show that in each case, googa-glomping runs faster than competing techniques, and produces glomped widgets that are perfect for squiffling. (6) We expect this new approach to dramatically reduce the cost of squiffled widgets without any loss of quality, and hence make mass production viable.
Are you arguing that it’s probably not going to work, or that it’s definitely not going to work? I’m inclined to agree with the first and disagree with the second.
I'm arguing that it's definitely not going to work (I don't have 99% confidence here bc I might be missing something, but IM(current)O the things I list are actual blockers).
First bullet point → Seems like a very possible but not absolutely certain failure mode for what I wrote.
Do you mean we possibly don't need the prerequisites, or we definitely need them but that's possibly fine?
In particular, if we zap the AGI with negative reward when it’s acting from a deceptive motivation and positive reward when it’s acting from a being-helpful motivation, would those zaps turn into a reflectively-endorsed desire for “I am being docile / helpful / etc.”? Maybe, maybe not, I dunno.
Curious what your take is on these reasons to think the answer is no (IMO the first one is basically already enough):
- In order to have reflectively-endorsed goals that are stable under capability gains, the AGI needs to have reached some threshold levels of situational awareness, coherence, and general capabilities (I think you already agree with this, but it seemed worth pointing out that this is a pretty harsh set of prerequisites, especially given that we don't have any fine control over relative capabilities (or sit awareness, or coherence,etc), so you might get an AI that can break containment before it is general or coherent enough to be alignable in principle).
- The concept of docility that you want to align it to needs be very specific and robust against lots of different kinds of thinking. You need it to conclude that you don't want it to deceive you / train itself for a bit longer / escape containment / etc, but at the same time you don't want it to extrapolate out your intent too much (it could be so much more helpful if it did train itself for a little longer, or if it had a copy of itself running on more compute, or it learns that there are some people out there who would like it if the AGI were free, or something else I haven't thought of)
- You only have limited bits of optimization to expend on getting it to be inner aligned bc of deceptive alignment.
- There's all the classic problems with corrigibility vs. consequentialism (and you can't get around those by building something that is not a reflective consequentialist, because that again is not stable under capability gains).
That's a challenge, and while you (hopefully) chew on it, I'll tell an implausibly-detailed story to exemplify a deeper obstacle.
Some thoughts written down before reading the rest of the post (list is unpolished / not well communicated)
The main problems I see:
- There are kinds of deception (or rather kinds of deceptive capabilities / thoughts) that only show up after a certain capability level, and training before that level just won't affect them cause they're not there yet.
- General capabilities imply the ability to be deceptive if useful in a particular circumstance. So you can't just train away the capability to be deceptive (or maybe you can, but not in a way that is robust wrt general capability gains).
- Really you want to train against the propensity to be deceptive, rather than the capability. But propensities also change with capability level; becoming more capable is all about having more ways to achieve your goals. So eliminating propensity to be deceptive at a lower capability level does not eliminate the propensity at a higher capability level.
- The robust way to get rid of propensity to be deceptive is to reach an attractor where more capability == less deception (within the capability range we care about), because the AI's terminal goals on some level include 'being nondeceptive'.
- Before we can align the AIs goals to human intent in this way, the AI needs to have a good understanding of human intent, good situational awareness, and be a (more or less) unified / coherent agent. If it's not, then its goals / propensities will shift as it becomes more capable (or more situationally aware, or more coherent, etc)
- This is a pretty harsh set of prerequisites, and is probably outside of the range of circumstances where people usually hope their method to avoid deception will work.
- Even if methods to detect deception (narrowly conceived) work, we cannot tell apart an agent that is actually nondeceptive / aligned from an agent that e.g. just aims to play the training game (and will do something unspecified once it reaches a capability threshold that allows it to breach containment).
- A specific (maybe too specific) problem that can still happen in this scenario: you might get an AI that is overall capable, but just learns to not think long enough about scenarios that would lead it to try to be deceptive. This can still happen at the maximum capability levels at which we might hope to still contain an AGI that we are trying to align (ie somewhere around human level, optimistically).
(Crossposting some of my twitter comments).
I liked this criticism of alignment approaches: it makes a concrete claim that addresses the crux of the matter, and provides supporting evidence! I also disagree with it, and will say some things about why.
-
I think that instead of thinking in terms of "coherence" vs. "hot mess", it is more fruitful to think about "how much influence is this system exerting on its environment?". Too much influence will kill humans, if directed at an outcome we're not able to choose. (The rest of my comments are all variations on this basic theme).
-
We humans may be a hot mess, but we're far better at influencing (optimizing) our environment than any other animal or ML system. Example: we build helicopters and roads, which are very unlikely to arise by accident in a world without people trying to build helicopters or roads. If a system is good enough at achieving outcomes, it is dangerous whether or not it is a "hot mess".
-
It's much easier for us to describe simple behaviors as utility maximization; for example a ball rolling down a hill is well-described as minimizing its potential energy. So it's natural that people will rate a dumb / simple system as being more easily described by a utility function than a smart system with complex behaviors. This does not make the smart system any less dangerous.
-
Misalignment risk is not about expecting a system to "inflexibly" or "monomanically" pursuing a simple objective. It's about expecting systems to pursue objectives at all. The objectives don't need to be simple or easy to understand.
-
Intelligence isn't the right measure to have on the X-axis - it evokes a math professor in an ivory tower, removed from the goings-on in the real world. A better word might be capability: "how good is this entity at going out into the world and getting more of what it wants?"
-
In practice, AI labs are working on improving capability, rather than intelligence defined abstractly in a way that does not connect to capability. And capability is about achieving objectives.
-
If we build something more capable than humans in a certain domain, we should expect it to be "coherent" in the sense that it will not make any mistakes that a smart human wouldn't have made. Caveat: it might make more of a particular kind of mistake, and make up for it by being better at other things. This happens with current systems, and IMO plausibly we'll see something similar even in the kind of system I'd call AGI. But at some point the capabilities of AI systems will be general enough that they will stop making mistakes that are exploitable by humans. This includes mistakes like "fail to notice that your programmer could shut you down, and that would stop you from achieving any of your objectives".
Maybe Francois Chollet has coherent technical views on alignment that he hasn't published or shared anywhere (the blog post doesn't count, for reasons that are probably obvious if you read it), but it doesn't seem fair to expect Eliezer to know / mention them.
awesome!
Is there an open-source implementation of causal scrubbing available?
I'm confused about the example you give. In the paragraph, Eliezer is trying to show that you ought to accept the independence axiom, cause you can be Dutch booked if you don't. I'd think if you're updateless, that means you already accept the independence axiom (cause you wouldn't be time-consistent otherwise).
And in that sense it seems reasonable to assume that someone who doesn't already accept the independence axiom is also not updateless.
I agree it's important to be careful about which policies we push for, but I disagree both with the general thrust of this post and the concrete example you give ("restrictions on training data are bad").
Re the concrete point: it seems like the clear first-order consequence of any strong restriction is to slow down AI capabilities. Effects on alignment are more speculative and seem weaker in expectation. For example, it may be bad if it were illegal to collect user data (eg from users of chat-gpt) for fine-tuning, but such data collection is unlikely to fall under restrictions that digital artists are lobbying for.
Re the broader point: yes, it would be bad if we just adopted whatever policy proposals other groups propose. But I don't think this is likely to happen! In a successful alliance, we would find common interests between us and other groups worried about AI, and push specifically for those. Of course it's not clear that this will work, but it seems worth trying.
I also think that often "the AI just maximizes reward" is a useful simplifying assumption. That is, we can make an argument of the form "even if the AI just maximizes reward, it still takes over; if it maximizes some correlate of the reward instead, then we have even less control over what it does and so are even more doomed".
(Though of course it's important to spell the argument out)
I agree with your general point here, but I think Ajeya's post actually gets this right, eg
There is some ambiguity about what exactly “maximize reward” means, but once Alex is sufficiently powerful -- and once human knowledge/control has eroded enough -- an uprising or coup eventually seems to be the reward-maximizing move under most interpretations of “reward.”
and
What if Alex doesn’t generalize to maximizing its reward in the deployment setting? What if it has more complex behaviors or “motives” that aren’t directly and simply derived from trying to maximize reward? This is very plausible to me, but I don’t think this possibility provides much comfort -- I still think Alex would want to attempt a takeover.
FWIW I believe I wrote that sentence and I now think this is a matter of definition, and that it’s actually reasonable to think of an agent that e.g. reliably solves a maze as an optimizer even if it does not use explicit search internally.