Evolution of Modularity

post by johnswentworth · 2019-11-14T06:49:04.112Z · LW · GW · 5 comments

This post is based on chapter 15 of Uri Alon’s book An Introduction to Systems Biology: Design Principles of Biological Circuits. See the book for more details and citations; see here [LW · GW] for a review of most of the rest of the book.

Fun fact: biological systems are highly modular, at multiple different scales. This can be quantified and verified statistically, e.g. by mapping out protein networks and algorithmically partitioning them into parts, then comparing the connectivity of the parts. It can also be seen more qualitatively in everyday biological work: proteins have subunits which retain their function when fused to other proteins, receptor circuits can be swapped out to make bacteria follow different chemical gradients, manipulating specific genes can turn a fly’s antennae into legs, organs perform specific functions, etc, etc.

On the other hand, systems designed by genetic algorithms (aka simulated evolution) are decidedly not modular. This can also be quantified and verified statistically. Qualitatively, examining the outputs of genetic algorithms confirms the statistics: they’re a mess.

So: what is the difference between real-world biological evolution vs typical genetic algorithms, which leads one to produce modular designs and the other to produce non-modular designs?

Kashtan & Alon tackle the problem by evolving logic circuits under various conditions. They confirm that simply optimizing the circuit to compute a particular function, with random inputs used for selection, results in highly non-modular circuits. However, they are able to obtain modular circuits using “modularly varying goals” (MVG).

The idea is to change the reward function every so often (the authors switch it out every 20 generations). Of course, if we just use completely random reward functions, then evolution doesn’t learn anything. Instead, we use “modularly varying” goal functions: we only swap one or two little pieces in the (modular) objective function. An example from the book:

The upshot is that our different goal functions generally use similar sub-functions - suggesting that they share sub-goals for evolution to learn. Sure enough, circuits evolved using MVG have modular structure, reflecting the modular structure of the goals.

(Interestingly, MVG also dramatically accelerates evolution - circuits reach a given performance level much faster under MVG than under a fixed goal, despite needing to change behavior every 20 generations. See either the book or the paper for more on that.)

How realistic is MVG as a model for biological evolution? I haven’t seen quantitative evidence, but qualitative evidence is easy to spot. MVG as a theory of biological modularity predicts that highly variable subgoals will result in modular structure, whereas static subgoals will result in a non-modular mess. Alon’s book gives several examples:

To sum it up: modularity in the system evolves to match modularity in the environment.

5 comments

Comments sorted by top scores.

comment by Kaj_Sotala · 2019-11-14T09:39:05.598Z · LW(p) · GW(p)

There is also the suggestion that having connection costs imposes modularity:

We investigate an alternate hypothesis [than the MVG one] that has been suggested, but heretofore untested, which is that modularity evolves not because it conveys evolvability, but as a byproduct from selection to reduce connection costs in a network (figure 1) [9,16]. Such costs include manufacturing connections, maintaining them, the energy to transmit along them and signal delays, all of which increase as a function of con- nection length and number [9,17 –19]. The concept of connection costs is straightforward in networks with physical connections (e.g. neural networks), but costs and physical limits on the number of possible connections may also tend to limit interactions in other types of networks such as genetic and metabolic pathways. For example, adding more connections in a signalling pathway might delay the time that it takes to output a critical response; adding regulation of a gene via more transcription factors may be difficult or impossible after a certain number of proximal DNA binding sites are occupied, and increases the time and material required for genome replication and regulation; and adding more protein–protein interactions to a system may become increasingly difficult as more of the remaining surface area is taken up by other binding interactions. Future work is needed to investigate these and other hypotheses regarding costs in cellular networks. The strongest evidence that biological networks face direct selection to minimize connection costs comes from the vascular system [20] and from nervous systems, including the brain, where multiple studies suggest that the summed length of the wiring diagram has been minimized, either by reducing long connections or by optimizing the placement of neurons [9,17 –19,21 –23]. Founding [16] and modern [9] neuroscientists have hypothesized that direct selection to minimize connection costs may, as a side-effect, cause modularity. [...]

Given the impracticality of observing modularity evolve in biological systems, we follow most research on the subject by conducting experiments in computational systems with evolutionary dynamics [4,11,13]. Specifically, we use a well- studied system from the MVG investigations [13,14,27]: evolving networks to solve pattern-recognition tasks and Boolean logic tasks (§4). [...]

After 25 000 generations in an unchanging environment (L-AND-R), treatments selected to maximize performance and minimize connection costs (P&CC) produce significantly more modular networks than treatments maximizing per- formance alone (PA)

comment by johnswentworth · 2019-11-14T18:13:42.363Z · LW(p) · GW(p)

Yeah, Alon briefly mentions that line of study as well, although he doesn't discuss it much. Personally, I think connection costs are less likely to be the main driver of biological modularity in general, for two main reasons:

  • If connection costs were a taut constraint, then we'd expect to see connection costs taking up a large fraction of the organism's resources. I don't think that's true for most organisms most of the time (though the human brain is arguably an exception). And qualitatively, if we look at the cost of e.g. signalling molecules in a bacteria, they're just not that expensive - mainly because they don't need very high copy number.
  • Connection costs are not a robust way to produce modularity - we need a delicate balance between cost and benefit, so that neither overwhelms the other. Given how universal modularity is in biology, across so many levels of organization and basically all known organisms, it seems like a less delicate mechanism is needed to explain it.

I do find it plausible that connection cost is a major driver in some specific systems - in particular, the sanity checks pass for the human brain. But I doubt that it's the main cause of modularity across so many different systems in biology.

comment by avturchin · 2019-11-15T15:57:34.119Z · LW(p) · GW(p)

Interestingly, many body parts have 2-3 different functions despite modularity. A mouth could be used for drinking, eating, biting, speaking and breathings; legs – for running and fighting

comment by Jman9107 · 2020-06-15T20:21:51.184Z · LW(p) · GW(p)

Wouldn't this be exactly what you'd expect given that they are modular? Modular as in flexible and re-usable in different contexts for different purposes?

comment by Jman9107 · 2020-06-16T03:44:14.858Z · LW(p) · GW(p)

Would you say that brain is a modular system because the environment it's meant to model is modular? E.g. social systems as a collection of modules (humans).