Lucius Bushnaq's Shortform
post by Lucius Bushnaq (Lblack) · 2024-07-06T09:08:43.607Z · LW · GW · 59 commentsContents
59 comments
59 comments
Comments sorted by top scores.
comment by Lucius Bushnaq (Lblack) · 2024-09-05T11:43:36.681Z · LW(p) · GW(p)
All current SAEs I'm aware of seem to score very badly on reconstructing the original model's activations.
If you insert a current SOTA SAE into a language model's residual stream, model performance on next token prediction will usually degrade down to what a model trained with less than a tenth or a hundredth of the original model's compute would get. (This is based on extrapolating with Chinchilla scaling curves at optimal compute). And that's for inserting one SAE at one layer. If you want to study circuits of SAE features, you'll have to insert SAEs in multiple layers at the same time, potentially further degrading performance.
I think many people outside of interp don't realize this. Part of the reason they don’t realize it might be that almost all SAE papers report loss reconstruction scores on a linear scale, rather than on a log scale or an LM scaling curve. Going from 1.5 CE loss to 2.0 CE loss is a lot worse than going from 4.5 CE to 5.0 CE. Under the hypothesis that the SAE is capturing some of the model's 'features' and failing to capture others, capturing only 50% or 10% of the features might still only drop the CE loss by a small fraction of a unit.
So, if someone is just glancing at the graphs without looking up what the metrics actually mean, they can be left with the impression that performance is much better than it actually is. The two most common metrics I see are raw CE scores of the model with the SAE inserted, and 'loss recovered'. I think both of these metrics give a wrong sense of scale. 'Loss recovered' is the worse offender, because it makes it outright impossible to tell how good the reconstruction really is without additional information. You need to know what the original model’s loss was and what zero baseline they used to do the conversion. Papers don't always report this, and the numbers can be cumbersome to find even when they do.
I don't know what an actually good way to measure model performance drop from SAE insertion is. The best I've got is to use scaling curves to guess how much compute you'd need to train a model that gets comparable loss, as suggested here. Or maybe alternatively, training with the same number of tokens as the original model, how many parameters you'd need to get comparable loss. Using this measure, the best reported reconstruction score I'm aware of is 0.1 of the original model's performance, reached by OpenAI's GPT-4 SAE with 16 million dictionary elements in this paper.
For most papers, I found it hard to convert their SAE reconstruction scores into this format. So I can't completely exclude the possibility that some other SAE scores much better. But at this point, I'd be quite surprised if anyone had managed so much as 0.5 performance recovered on any model that isn't so tiny and bad it barely has any performance to destroy in the first place. I'd guess most SAEs get something in the range 0.01-0.1 performance recovered or worse.
Note also that getting a good reconstruction score still doesn't necessarily mean the SAE is actually showing something real and useful. If you want perfect reconstruction, you can just use the standard basis of the network. The SAE would probably also need to be much sparser than the original model activations to provide meaningful insights.
Replies from: leogao, neel-nanda-1, alexander-gietelink-oldenziel, Sodium, keith_wynroe↑ comment by leogao · 2024-09-06T04:19:40.662Z · LW(p) · GW(p)
Basically agree - I'm generally a strong supporter of looking at the loss drop in terms of effective compute. Loss recovered using a zero-ablation baseline is really quite wonky and gives misleadingly big numbers.
I also agree that reconstruction is not the only axis of SAE quality we care about. I propose explainability as the other axis - whether we can make necessary and sufficient explanations for when individual latents activate. Progress then looks like pushing this Pareto frontier.
↑ comment by Neel Nanda (neel-nanda-1) · 2024-09-06T10:40:04.856Z · LW(p) · GW(p)
This seems true to me, though finding the right scaling curve for models is typically quite hard so the conversion to effective compute is difficult. I typically use CE loss change, not loss recovered. I think we just don't know how to evaluate SAE quality.
My personal guess is that SAEs can be a useful interpretability tool despite making a big difference in effective compute, and we should think more in terms of useful they are for downstream tasks. But I agree this is a real phenomena, that is easy to overlook, and is bad.
↑ comment by Alexander Gietelink Oldenziel (alexander-gietelink-oldenziel) · 2024-09-05T23:46:50.030Z · LW(p) · GW(p)
As a complete noob in all things mechinterp can somebody explain how this is not in conflict with SAE enjoyers saying they get reconstruction loss in the high 90s or even 100 %?
I understand the logscale argument that Lucius is making but still seems surprising ? Is this really what's going on or are they talking about different things here.
Replies from: ryan_greenblatt, Lblack↑ comment by ryan_greenblatt · 2024-09-06T00:16:07.070Z · LW(p) · GW(p)
The key question is 90% recovered relative to what. If you recover 90% of the loss relative to a 0 ablation baseline (that ablates the entire residual stream midway though the model!), that isn't clearly that much.
E.g., if full zero ablation is 13 CE loss (seems plausible) and the SAE gets you to 3 CE while the original model was at 2 CE, this is 90%, but you have also massively degraded performance in terms of effective training compute.
IDK about literal 100%.
↑ comment by Lucius Bushnaq (Lblack) · 2024-09-06T05:22:27.263Z · LW(p) · GW(p)
The metric you mention here is probably 'loss recovered'. For a residual stream insertion, it goes
1-(CE loss with SAE- CE loss of original model)/(CE loss if the entire residual stream is ablated-CE loss of original model)
See e.g. equation 5 here.
So, it's a linear scale, and they're comparing the CE loss increase from inserting the SAE to the CE loss increase from just destroying the model and outputting a ≈ uniform distribution over tokens. The latter is a very large CE loss increase, so the denominator is really big. Thus, scoring over 90% is pretty easy.
↑ comment by Sodium · 2024-09-06T06:32:53.212Z · LW(p) · GW(p)
Have people done evals for a model with/without an SAE inserted? Seems like even just looking at drops in MMLU performance by category could be non-trivially informative.
Replies from: Lblack↑ comment by Lucius Bushnaq (Lblack) · 2024-09-06T07:19:45.641Z · LW(p) · GW(p)
I've seen a little bit of this, but nowhere near as much as I think the topic merits. I agree that systematic studies on where and how the reconstruction errors make their effects known might be quite informative.
Basically, whenever people train SAEs, or use some other approximate model decomposition that degrades performance, I think they should ideally spend some time after just playing with the degraded model and talking to it. Figure out in what ways it is worse.
Replies from: Sodium↑ comment by keith_wynroe · 2024-09-06T10:26:50.736Z · LW(p) · GW(p)
What are your thoughts on KL-div after the unembed softmax as a metric?
Replies from: Lblack, neel-nanda-1↑ comment by Lucius Bushnaq (Lblack) · 2024-09-06T11:06:49.802Z · LW(p) · GW(p)
On its own, this'd be another metric that doesn't track the right scale as models become more powerful.
The same KL-div in GPT-2 and GPT-4 probably corresponds to the destruction of far more of the internal structure in the latter than the former.
Destroy 95% of GPT-2's circuits, and the resulting output distribution may look quite different. Destroy 95% of GPT-4's circuits, and the resulting output distribution may not be all that different, since 5% of the circuits in GPT-4 might still be enough to get a lot of the most common token prediction cases roughly right.
↑ comment by Neel Nanda (neel-nanda-1) · 2024-09-06T10:40:57.802Z · LW(p) · GW(p)
I don't see important differences between that and ce loss delta in the context Lucius is describing
comment by Lucius Bushnaq (Lblack) · 2024-07-06T09:08:43.807Z · LW(p) · GW(p)
Many people in interpretability currently seem interested in ideas like enumerative safety, where you describe every part of a neural network to ensure all the parts look safe. Those people often also talk about a fundamental trade-off in interpretability between the completeness and precision of an explanation for a neural network's behavior and its description length.
I feel like, at the moment, these sorts of considerations are all premature and beside the point.
I don't understand how GPT-4 can talk. Not in the sense that I don't have an accurate, human-intuitive description of every part of GPT-4 that contributes to it talking well. My confusion is more fundamental than that. I don't understand how GPT-4 can talk the way a 17th-century scholar wouldn't understand how a Toyota Corolla can move. I have no gears-level model for how anything like this could be done at all. I don't want a description of every single plate and cable in a Toyota Corolla, and I'm not thinking about the balance between the length of the Corolla blueprint and its fidelity as a central issue of interpretability as a field.
What I want right now is a basic understanding of combustion engines. I want to understand the key internal gears of LLMs that are currently completely mysterious to me, the parts where I don't have any functional model at all for how they even could work. What I ultimately want to get out of Interpretability at the moment is a sketch of Python code I could write myself, without a numeric optimizer as an intermediary, that would be able to talk.
↑ comment by ryan_greenblatt · 2024-07-06T17:49:24.818Z · LW(p) · GW(p)
When doing bottom up interpretability, it's pretty unclear if you can answer questions like "how does GPT-4 talk" without being able to explain arbitrary parts to a high degree of accuracy.
I agree that top down interpretability trying to answer more basic questions seems good. (And generally I think top down interpretability looks more promising than bottom up interpretability at current margins.)
(By interpretability, I mean work aimed at having humans understand the algorithm/approach the model to uses to solve tasks. I don't mean literally any work which involves using the internals of the model in some non-basic way.)
I have no gears-level model for how anything like this could be done at all. [...] What I want right now is a basic understanding of combustion engines. I want to understand the key internal gears of LLMs that are currently completely mysterious to me, the parts where I don't have any functional model at all for how they even could work. What I ultimately want to get out of Interpretability at the moment is a sketch of Python code I could write myself.
It's not obvious to me that what you seem to want exists. I think the way LLMs work might not be well described as having key internal gears or having an at-all illuminating python code sketch.
(I'd guess something sorta close to what you seem to be describing, but ultimately disappointing and mostly unilluminating exists. And something tremendously complex but ultimately pretty illuminating if you fully understood it might exist.)
Replies from: eye96458↑ comment by Adam Shai (adam-shai) · 2024-07-06T17:15:14.267Z · LW(p) · GW(p)
I very strongly agree with the spirit of this post. Though personally I am a bit more hesitant about what exactly it is that I want in terms of understanding how it is that GPT-4 can talk. In particular I can imagine that my understanding of how GPT-4 could talk might be satisfied by understanding the principles by which it talks, but without necessarily being able to from scratch write a talking machine. Maybe what I'd be after in terms of what I can build is a talking machine of a certain toyish flavor - a machine that can talk in a synthetic/toy language. The full complexity of its current ability seems to have too much structure to be constructed from first princples. Though of course one doesn't know until our understanding is more complete.
↑ comment by RogerDearnaley (roger-d-1) · 2024-07-06T09:45:10.074Z · LW(p) · GW(p)
Interesting question. I'd suggest starting by doing interpretability on some of the TinyStories models and corpus: they have models with as few as 1–2 layers, 64-or-more dimensional embeddings, and only millions of parameters that can talk (childish) English. That sounds like the sort of thing that might actually be enumerable, with enough work. I think trying to figure that that might be a great testing ground for current ideas in interpretability: large enough to not be a toy model, but small enough to hopefully be tractable.
Replies from: Stefan42↑ comment by StefanHex (Stefan42) · 2024-07-09T08:45:30.218Z · LW(p) · GW(p)
The tiny story status seems quite simple, in the sense that I can see how you could provide TinyStories levels of loss by following simple rules plus a bunch of memorization.
Empirically, one of the best models in the tiny stories paper is a super wide 1L transformer, which basically is bigrams, trigrams, and slightly more complicated variants [see Bucks post] but nothing that requires a step of reasoning.
I am actually quite uncertain where the significant gap between TinyStories, GPT-2 and GPT-4 is. Maybe I could fully understand TinyStories-1L if I tried, would this tell us about GPT-4? I feel like the result for TinyStories will be a bunch of heuristics.
Replies from: jowen, roger-d-1↑ comment by jowen · 2024-07-09T11:17:19.648Z · LW(p) · GW(p)
Is that TinyStories model a super-wide attention-only transformer (the topic of the mechanistic interp work and Buck’s post you cite). I tried to figure it out briefly and couldn’t tell, but I bet it isn’t, and instead has extra stuff like an MLP block.
Regardless, in my view it would be a big advance to really understand how the TinyStories models work. Maybe they are “a bunch of heuristics” but maybe that’s all GPT-4, and our own minds, are as well…
Replies from: Stefan42↑ comment by StefanHex (Stefan42) · 2024-07-09T11:34:33.211Z · LW(p) · GW(p)
That model has an Attention and MLP block (GPT2-style model with 1 layer but a bit wider, 21M params).
I changed my mind over the course of this morning. TheTinyStories models' language isn't that bad, and I think it'd be a decent research project to try to fully understand one of these.
I've been playing around with the models this morning, quotes from the 1-layer model:
Once upon a time, there was a lovely girl called Chloe. She loved to go for a walk every morning and one day she came across a road.
One day, she decided she wanted to go for a ride. She jumped up and down, and as she jumped into the horn, shouting whatever makes you feel like.
When Chloe was flying in the sky, she saw some big white smoke above her. She was so amazed and decided to fly down and take a closer look.
When Chloe got to the edge of a park, there was a firework show. The girl smiled and said "Oh, hello, there. I will make sure to finish in my flying body before it gets too cold," it said.So Chloe flew to the park again, with a very persistent look at the white horn. She was very proud of her creation and was thankful for being so brave.
Summary: Chloe, a persistent girl, explores the park with the help of a firework sparkle and is shown how brave the firework can be persistent.
and
Once upon a time, there lived a young boy. His name was Caleb. He loved to learn new things and gain healthy by playing outside.
One day, Caleb was in the garden and he started eating an onion. He was struggling to find enough food to eat, but he couldn't find anything.
Just then, Caleb appeared with a magical lake. The young boy told Caleb he could help him find his way home if he ate the onion. Caleb was so excited to find the garden had become narrow enough for Caleb to get his wish.
Caleb thought about what the pepper was thinking. He then decided to try and find a safer way to play with them next time. From then on, Caleb became healthier and could eat sweets and sweets in the house.
With the peppers, Caleb ate delicious pepper and could be heard by again. He was really proud of himself and soon enough he was playing in the garden again.
This feels like the kind of inconsistency I expect from a model that has only one layer. It can recall that the story was about flying and stuff, and the names, but it feels a bit like the model doesn't remember what it said a paragraph before.
2-layer model:
Once upon a time, there was a lazy bear. He lived in a tall village surrounded by thick trees and lonely rivers.
The bear wanted to explore the far side of the mountain, so he asked a kind bird if he wanted to come. The bird said, "Yes, but first let me seat in my big tree. Follow me!"
The bear was excited and followed the bird. They soon arrived at a beautiful mountain. The mountain was rich with juicy, delicious fruit. The bear was so happy and thanked the bird for his help. They both shared the fruit and had a great time.
The bear said goodbye to the bird and returned to his big tree, feeling very happy and content. From then on, the bear went for food every day and could often seat in his tall tree by the river.
Summary: A lazy bear ventures on a mountain and finds a kind bird who helps him find food on his travels. The bear is happy and content with the food and a delicious dessert.
and
Once upon a time, there were two best friends, a gingerbread fox and a gingerbread wolf. Everyone loved the treats and had a great time together, playing games and eating the treats.
The gingerbread fox spoke up and said: "Let's be like buying a house for something else!" But the ginger suggested that they go to the market instead. The friends agreed and they both went to the market.
Back home, the gingerbread fox was happy to have shared the treats with the friends. They all ate the treats with the chocolates, ran around and giggled together. The gingerbread fox thought this was the perfect idea, and every day the friends ate their treats and laughed together.
The friends were very happy and enjoyed every single morsel of it. No one else was enjoying the fun and laughter that followed. And every day, the friends continued to discuss different things and discover new new things to imagine.
Summary: Two best friends, gingerbread and chocolate, go to the market to buy treats but end up only buying a small house for a treat each, which they enjoy doing together.
I think if we can fully understand (in the Python code sense, probably with a bunch of lookup tables) how these models work this will give us some insight into where we're at with interpretability. Do the explanations feel sufficiently compressed? Does it feel like there's a simpler explanation that the code & tables we've written?
Edit: Specifically I'm thinking of
- Train SAEs on all layers
- Use this [LW · GW] for Attention QK circuits (and transform OV circuit into SAE basis, or Transcoder basis)
- Use Transcoders [LW · GW] for MLPs
(Transcoders vs SAEs are somewhat redundant / different approaches, figure out how to connect everything together)
Replies from: roger-d-1↑ comment by RogerDearnaley (roger-d-1) · 2024-07-10T07:17:54.010Z · LW(p) · GW(p)
Yup: the 1L model samples are full of non-sequiturs, to the level I can't imagine a human child telling a story that badly; whereas the first 2L model example has maybe one non-sequitur/plot jump (the way the story ignores the content of bird's first line of dialog), which the rest of the story then works into it so it ends up almost making sense, in retrospect (except it would have made better sense if the bear had said that line). They second example has a few non-sequiturs, but they're again not glaring and continuous the way the 1L output is. (As a parent) I can imagine a rather small human child telling a story with about the 2L level of plot inconsistencies.
↑ comment by RogerDearnaley (roger-d-1) · 2024-07-10T06:59:14.030Z · LW(p) · GW(p)
From rereading the Tiny Stories paper, the 1L model did a really bad job of maintaining the internal consistency of the story and figuring out and allowing for the logical consequences of events, but otherwise did a passably good job of speaking coherent childish English. So the choice on transformer block count would depend on how interested you are in learning how to speak English that is coherent as well as grammatical. Personally I'd probably want to look at something in the 3–4-layer range, so it has an input layer, and output layer, and at least one middle layer, and might actually contain some small circuits.
I would LOVE to have an automated way of converting a Tiny Stories-size transformer to some form of declarative language spaghetti code. It would probably help to start with a heavily-quantized version. For example, a model trained using the techniques of the recent paper on building AI using trinary logic (so roughly a 1.6-bit quantization, and eliminating matrix multiplication entirely) might be a good place to start, combined with the sort of techniques the model-pruning folks have been working on for which model-internal interactions are important on the training set and which are just noise and can be discarded.
I strongly suspect that every transformer model is just a vast pile of heuristics. In certain cases, if trained on a situation that genuinely is simple and has a specific algorithm to solve it runnable during a model forward-pass (like modular arithmetic, for example), and with enough data to grok it, then the resulting heuristic may actually be an elegant True Name algorithm for the problem. Otherwise, it's just going to be a pile of heuristics that SGD found and tuned. Fortunately SGD (for reasons that singular learning theory [? · GW] illuminates) has a simplicity bias that gives a prior that acts like Occam's Razor or a Kolmogorov Complexity prior, so tends to prefer algorithms that generalize well (especially as the amount of data tends to infinity, thus groking), but obviously finding True Names isn't going to be guaranteed.
↑ comment by Bogdan Ionut Cirstea (bogdan-ionut-cirstea) · 2024-07-06T12:30:44.307Z · LW(p) · GW(p)
What I want right now is a basic understanding of combustion engines. I want to understand the key internal gears of LLMs that are currently completely mysterious to me, the parts where I don't have any functional model at all for how they even could work. What I ultimately want to get out of Interpretability at the moment is a sketch of Python code I could write myself, without a numeric optimizer as an intermediary, that would be able to talk.
How would you operationalize this in ML terms? E.g. how much loss in performance would you consider acceptable, on how wide a distribution of e.g. GPT-4's capabilities, how many lines of python code, etc.? Would you consider acceptable existing rough theoretical explanations, e.g. An Information-Theoretic Analysis of In-Context Learning? (I suspect not, because no 'sketch of python code' feasibility).
Replies from: bogdan-ionut-cirstea↑ comment by Bogdan Ionut Cirstea (bogdan-ionut-cirstea) · 2024-07-06T12:52:00.486Z · LW(p) · GW(p)
(I'll note that by default I'm highly skeptical of any current-day-human producing anything like a comprehensible, not-extremely-long 'sketch of Python code' of GPT-4 in a reasonable amount of time. For comparison, how hopeful would you be of producing the same for a smart human's brain? And on some dimensions - e.g. knowledge - GPT-4 is vastly superhuman.)
Replies from: roger-d-1↑ comment by RogerDearnaley (roger-d-1) · 2024-07-10T07:31:10.567Z · LW(p) · GW(p)
I think OP just wanted some declarative code (I don't think Python is the ideal choice of language, but basically anything that's not a Turing tarpit is fine) that could speak fairly coherent English. I suspect if you had a functional transformer decompiler the results aof appling it to a Tiny Stories-size model are going to be tens to hundreds of megabytes of spaghetti, so understanding that in detail is going to be huge slog, but on the other hand, this is an actual operationalization of the Chinese Room argument (or in this case, English Room)! I agree it would be fascinating, if we can get a significant fraction of the model's perplexity score. If it is, as people seem to suspect, mostly or entirely a pile of spaghetti, understanding even a representative (frequency-of-importance biased) statistical sample of it (say, enough for generating a few specific sentences) would still be fascinating.
↑ comment by Jason Gross (jason-gross) · 2024-07-22T07:11:47.906Z · LW(p) · GW(p)
I don't want a description of every single plate and cable in a Toyota Corolla, I'm not thinking about the balance between the length of the Corolla blueprint and its fidelity as a central issue of interpretability as a field.
What I want right now is a basic understanding of combustion engines.
This is the wrong 'length'. The right version of brute-force length is not "every weight and bias in the network" but "the program trace of running the network on every datapoint in pretrain". Compressing the explanation (not just the source code) is the thing connected to understanding. This is what we found from getting formal proofs of model behavior in Compact Proofs of Model Performance via Mechanistic Interpretability [AF · GW].
Does the 17th-century scholar have the requisite background to understand the transcript of how bringing the metal plates in the spark plug close enough together results in the formation of a spark? And how gasoline will ignite and expand? I think given these two building blocks, a complete description of the frame-by-frame motion of the Toyota Corolla would eventually convince the 17th-century scholar that such motion is possible, and what remains would just be fitting the explanation into their head all at once. We already have the corresponding building blocks for neural nets: floating point operations.
comment by Lucius Bushnaq (Lblack) · 2024-09-20T12:44:26.687Z · LW(p) · GW(p)
I think we may be close to figuring out a general mathematical framework for circuits in superposition.
I suspect that we can get a proof that roughly shows:
- If we have a set of different transformers, with parameter counts implementing e.g. solutions to different tasks
- And those transformers are robust to size noise vectors being applied to the activations at their hidden layers
- Then we can make a single transformer with total parameters that can do all tasks, provided any given input only asks for tasks to be carried out
Crucially, the total number of superposed operations we can carry out scales linearly with the network's parameter count, not its neuron count or attention head count. E.g. if each little subnetwork uses neurons per MLP layer and dimensions in the residual stream, a big network with neurons per MLP connected to a -dimensional residual stream can implement about subnetworks, not just .
This would be a generalization of the construction for boolean logic gates in superposition. It'd use the same central trick, but show that it can be applied to any set of operations or circuits, not just boolean logic gates. For example, you could superpose an MNIST image classifier network and a modular addition network with this.
So, we don't just have superposed variables in the residual stream. The computations performed on those variables are also carried out in superposition.
Remarks:
- What the subnetworks are doing doesn't have to line up much with the components and layers of the big network. Things can be implemented all over the place. A single MLP and attention layer in a subnetwork could be implemented by a mishmash of many neurons and attention heads across a bunch of layers of the big network. Call it cross-layer superposition if you like.
- This framing doesn't really assume that the individual subnetworks are using one-dimensional 'features' represented as directions in activation space. The individual subnetworks can be doing basically anything they like in any way they like. They just have to be somewhat robust to noise in their hidden activations.
- You could generalize this from subnetworks doing unrelated tasks to "circuits" each implementing some part of a big master computation. The crucial requirement is that only circuits are used on any one forward pass.
- I think formulating this for transformers, MLPs and CNNs should be relatively straightforward. It's all pretty much the same trick. I haven't thought about e.g. Mamba yet.
Implications if we buy that real models work somewhat like this toy model would:
- There is no superposition in parameter space. A network can't have more independent operations than parameters. Every operation we want the network to implement takes some bits of description length in its parameters to specify, so the total description length scales linearly with the number of distinct operations. Overcomplete bases are only a thing in activation space.
- There is a set of Cartesian directions in the loss landscape that parametrize the individual superposed circuits.
- If the circuits don't interact with each other, I think the learning coefficient [? · GW] of the whole network might roughly equal the sum of the learning coefficients of the individual circuits?
- If that's the case, training a big network to solve different tasks, per data point, is somewhat equivalent to parallel training runs trying to learn a circuit for each individual task over a subdistribution. This works because any one of the runs has a solution with a low learning coefficient, so one task won't be trying to use effective parameters that another task needs. In a sense, this would be showing how the low-hanging fruit prior [LW · GW] works.
Main missing pieces:
- I don't have the proof yet. I think I basically see what to do to get the constructions, but I actually need to sit down and crunch through the error propagation terms to make sure they check out.
- With the right optimization procedure, I think we should be able to get the parameter vectors corresponding to the individual circuits back out of the network. Apollo's interp team is playing with a setup right now that I think might be able to do this. But it's early days. We're just calibrating on small toy models at the moment.
↑ comment by Lucius Bushnaq (Lblack) · 2024-09-26T08:01:31.808Z · LW(p) · GW(p)
Spotted just now. At a glance, this still seems to be about boolean computation though. So I think I should still write up the construction I have in mind.
Status on the proof: I think it basically checks out for residual MLPs. Hoping to get an early draft of that done today. This will still be pretty hacky in places, and definitely not well presented. Depending on how much time I end up having and how many people collaborate with me, we might finish a writeup for transformers in the next two weeks.
comment by Lucius Bushnaq (Lblack) · 2024-07-28T10:14:23.725Z · LW(p) · GW(p)
Current LLMs are trivially mesa-optimisers under the original definition of that term.
I don't get why people are still debating the question of whether future AIs are going to be mesa-optimisers. Unless I've missed something about the definition of the term, lots of current AI systems are mesa-optimisers. There were mesa-opimisers around before Risks from Learned Optimization in Advanced Machine Learning Systems was even published.
We will say that a system is an optimizer if it is internally searching through a search space (consisting of possible outputs, policies, plans, strategies, or similar) looking for those elements that score high according to some objective function that is explicitly represented within the system.
....
Mesa-optimization occurs when a base optimizer (in searching for algorithms to solve some problem) finds a model that is itself an optimizer, which we will call a mesa-optimizer.
GPT-4 is capable of making plans to achieve objectives if you prompt it to. It can even write code to find the local optimum of a function, or code to train another neural network, making it a mesa-meta-optimiser. If gradient descent is an optimiser, then GPT-4 certainly is.
Being a mesa-optimiser is just not a very strong condition. Any pre-transformer ml paper that tried to train neural networks to find better neural network training algorithms was making mesa-optimisers. It is very mundane and expected for reasonably general AIs to be mesa-optimisers. Any program that can solve even somewhat general problems is going to have a hard time not meeting the definition of an optimiser.
Maybe this is some sort of linguistic drift at work, where 'mesa-optimiser' has come to refer specifically to a sysytem that is only an optimiser, with one single set of objectives it will always try to accomplish in any situation. Fine.
The result of this imprecise use of the original term though, as I perceive it, is that people are still debating and researching whether future AI's might start being mesa-optimisers, as if that was relevant to the will-they-kill-us-all question. But, at least sometimes, what they seem to actually concretely debate and research is whether future AIs might possibly start looking through search spaces to accomplish objectives, as if that wasn't a thing current systems obviously already do.
Replies from: bogdan-ionut-cirstea, Gunnar_Zarncke, programcrafter↑ comment by Bogdan Ionut Cirstea (bogdan-ionut-cirstea) · 2024-07-28T13:07:51.705Z · LW(p) · GW(p)
I suspect a lot of the disagreement might be about whether LLMs are something like consistent / context-independent optimizers of e.g. some utility function (they seem very unlikely to), not whether they're capable of optimization in various (e.g. prompt-dependent, problem-dependent) contexts.
Replies from: bogdan-ionut-cirstea↑ comment by Bogdan Ionut Cirstea (bogdan-ionut-cirstea) · 2024-07-28T16:00:58.215Z · LW(p) · GW(p)
The top comment also seems to be conflating whether a model is capable of (e.g. sometimes, in some contexts) mesaoptimizing and whether it is (consistently) mesaoptimizing. I interpret the quoted original definition as being about the second, which LLMs probably aren't, though they're capable of the first. This seems like the kind of ontological confusion that the Simulators post discusses at length.
Replies from: Lblack↑ comment by Lucius Bushnaq (Lblack) · 2024-07-28T16:40:28.989Z · LW(p) · GW(p)
If that were the intended definition, gradient descent wouldn’t count as an optimiser either. But they clearly do count it, else an optimiser gradient descent produces wouldn’t be a mesa-optimiser.
Gradient descent optimises whatever function you pass it. It doesn’t have a single set function it tries to optimise no matter what argument you call it with. If you don’t pass any valid function, it doesn’t optimise anything.
GPT-4, taken by itself, without a prompt, will optimise pretty much whatever you prompt it to optimise. If you don’t prompt it to optimise something, it usually doesn’t optimise anything.
I guess you could say GPT-4, unlike gradient descent, can do things other than optimise something. But if ever not optimising things excluded you from being an optimiser, humans wouldn’t be considered optimisers either.
So it seems to me that the paper just meant what it said in the quote. If you look through a search space to accomplish an objective, you are, at present, an optimiser.
Replies from: nostalgebraist↑ comment by nostalgebraist · 2024-07-28T18:03:49.454Z · LW(p) · GW(p)
If that were the intended definition, gradient descent wouldn’t count as an optimiser either. But they clearly do count it, else an optimiser gradient descent produces wouldn’t be a mesa-optimiser.
Gradient descent optimises whatever function you pass it. It doesn’t have a single set function it tries to optimise no matter what argument you call it with.
Gradient descent, in this sense of the term, is not an optimizer according to Risks from Learned Optimization.
Consider that Risks from Learned Optimization talks a lot about "the base objective" and "the mesa-objective." This only makes sense if the objects being discussed are optimization algorithms together with specific, fixed choices of objective function.
"Gradient descent" in the most general sense is -- as you note -- not this sort of thing. Therefore, gradient descent in that general sense is not the kind of thing that Risks from Learned Optimization is about.
Gradient descent in this general sense is a "two-argument function," , where is the thing to be optimized and is the objective function. The objects of interest in Risks from Learned Optimization are curried single-argument versions of such functions, for some specific choice of , considered as a function of alone.
It's fairly common for people to say "gradient descent" when they mean for some specific , rather than the more generic . This is because in practice -- unless you're doing some weird experimental thing that's not really "gradient descent" per se -- is always fixed across the course of a run of gradient descent. When you run gradient descent to optimize an , the result you get was not "optimized by gradient descent in general" (what would that even mean?), it was optimized for whichever you chose by the corresponding .
This is what licenses talking about "the base objective" when considering an SGD training run of a neural net. There is a base objective in such runs, it's the loss function, we know exactly what it is, we wrote it down.
On the other hand, the notion that the optimized s would have "mesa-objectives" -- that they would themselves be objects like with their own unchanging s, rather than being simply capable of context-dependent optimization of various targets, like GPT-4 or -- is a non-obvious claim/assumption(?) made by Risks from Learned Optimization. This claim doesn't hold for GPT-4, and that's why it is not a mesa-optimizer.
↑ comment by Gunnar_Zarncke · 2024-07-28T19:02:24.037Z · LW(p) · GW(p)
It is surely possible that there are mesa optimizers present in many, even relatively simple LLMs. But the question is: How powerful are these? How large is the state space that they can search through, for example? The state space of the mesa-optimizer can't be larger than the the context window it is using to generate the answer, for example, while the state space of the full LLM is much bigger - basically all its weights.
↑ comment by ProgramCrafter (programcrafter) · 2024-07-29T08:13:48.333Z · LW(p) · GW(p)
Current LLMs are trivially mesa-optimisers under the original definition of that term.
Do current LLMs produce several options then compare them according to an objective function?
They do, actually, evaluate each of possible output tokens, then emitting one of the most probable ones, but I think that concern is more about AI comparing larger chunks of text (for instance, evaluating paragraphs of a report by stakeholders' reaction).
comment by Lucius Bushnaq (Lblack) · 2024-10-23T08:50:10.406Z · LW(p) · GW(p)
Does the Solomonoff Prior Double-Count Simplicity?
Question: I've noticed what seems like a feature of the Solomonoff prior that I haven't seen discussed in any intros I've read. The prior is usually described as favoring simple programs through its exponential weighting term, but aren't simpler programs already exponentially favored in it just through multiplicity alone, before we even apply that weighting?
Consider Solomonoff induction applied to forecasting e.g. a video feed of a whirlpool, represented as a bit string . The prior probability for any such string is given by:
where ranges over programs for a prefix-free Universal Turing Machine.
Observation: If we have a simple one kilobit program that outputs prediction , we can construct nearly different two kilobit programs that also output by appending arbitrary "dead code" that never executes.
For example:
DEADCODE="[arbitrary 1 kilobit string]"
[original 1 kilobit program ]
EOF
Where programs aren't allowed to have anything follow EOF, to ensure we satisfy the prefix free requirement.
If we compare against another two kilobit program outputting a different prediction , the prediction from would get more contributions in the sum, where is the very small number of bits we need to delimit the DEADCODE garbage string. So we're automatically giving ca. higher probability – even before applying the length penalty . has less 'burdensome details', so it has more functionally equivalent implementations. Its predictions seem to be exponentially favored in proportion to its length already due to this multiplicity alone.
So, if we chose a different prior than the Solomonoff prior which just assigned uniform probability to all programs below some very large cutoff, say bytes:
and then followed the exponential decay of the Solomonoff prior for programs longer than bytes, wouldn't that prior act barely differently than the Solomonoff prior in practice? It’s still exponentially preferring predictions with shorter minimum message length.[1]
Am I missing something here?
- ^
Context for the question: Multiplicity of implementation is how simpler hypotheses are favored in Singular Learning Theory [? · GW] despite the prior over neural network weights usually being uniform. I'm trying to understand how those SLT statements about neural networks generalising relate to algorithmic information theory statements about Turing machines, and Jaynes-style pictures of probability theory.
↑ comment by samshap · 2024-10-23T12:17:13.313Z · LW(p) · GW(p)
Yes, you are missing something.
Any DEADCODE that can be added to a 1kb program can also be added to a 2kb program. The net effect is a wash, and you will end up with a ratio over priors
Replies from: Lblack↑ comment by Lucius Bushnaq (Lblack) · 2024-10-23T12:46:55.797Z · LW(p) · GW(p)
Why aren’t there 2^{1000} less programs with such dead code and a total length below 10^{90} for p_2, compared to p_1?
Replies from: samshap↑ comment by Dalcy (Darcy) · 2024-10-23T20:52:18.079Z · LW(p) · GW(p)
https://www.lesswrong.com/posts/KcvJXhKqx4itFNWty/k-complexity-is-silly-use-cross-entropy-instead [LW · GW]
The K-complexity of a function is the length of its shortest code. But having many many codes is another way to be simple! Example: gauge symmetries in physics. Correcting for length-weighted code frequency, we get an empirically better simplicity measure: cross-entropy.
Replies from: Lblack[this] is a well-known notion in algorithmic information theory, and differs from K-complexity by at most a constant
↑ comment by Lucius Bushnaq (Lblack) · 2024-10-23T21:06:01.997Z · LW(p) · GW(p)
Sure. But what’s interesting to me here is the implication that, if you restrict yourself to programs below some maximum length, weighing them uniformly apparently works perfectly fine and barely differs from Solomonoff induction at all.
This resolves a remaining confusion I had about the connection between old school information theory and SLT. It apparently shows that a uniform prior over parameters (programs) of some fixed size parameter space is basically fine, actually, in that it fits together with what algorithmic information theory says about inductive inference.
↑ comment by harfe · 2024-10-23T14:42:25.956Z · LW(p) · GW(p)
I think you are broadly right.
So we're automatically giving ca. higher probability – even before applying the length penalty .
But note that under the Solomonoff prior, you will get another penalty for these programs with DEADCODE. So with this consideration, the weight changes from (for normal ) to (normal plus DEADCODE versions of ), which is not a huge change.
For your case of "uniform probability until " I think you are right about exponential decay.
Replies from: Lblack↑ comment by Lucius Bushnaq (Lblack) · 2024-10-23T14:52:05.433Z · LW(p) · GW(p)
Yes, my point here is mainly that the exponential decay seems almost baked into the setup even if we don't explicitly set it up that way, not that the decay is very notably stronger than it looks at first glance.
Given how many words have been spilled arguing over the philosophical validity of putting the decay with program length into the prior, this seems kind of important?
↑ comment by Richard_Kennaway · 2024-10-23T16:03:44.511Z · LW(p) · GW(p)
The number of programs of length at most n increases exponentially with n. Therefore any probability measure over them must decrease at least exponentially with length. That is, exponential decay is the least possible penalisation of length.
This is also true of the number of minimal programs of length at most n, hence the corresponding conclusion. (Proof: for each string S, consider the minimal program that writes S and halts. These programs are all different. Their sizes are no more than length(S)+c, where c is the fixed overhead of writing a program with S baked into it. Therefore exponentiality.)
I've written "at most n" instead of simply "n", to guard against quirks like a programming language in which all programs are syntactically required to e.g. have even length, or deep theorems about the possible lengths of minimal programs.
comment by Lucius Bushnaq (Lblack) · 2024-09-18T09:39:08.729Z · LW(p) · GW(p)
Has anyone thought about how the idea of natural [LW · GW] latents [LW · GW] may be used to help formalise QACI [LW · GW]?
The simple core insight of QACI according to me is something like: A formal process we can describe that we're pretty sure would return the goals we want an AGI to optimise for is itself often a sufficient specification of those goals. Even if this formal process costs galactic amounts of compute and can never actually be run, not even by the AGI itself.
This allows for some funny value specification strategies we might not usually think about. For example, we could try using some camera recordings of the present day, a for loop, and a code snippet implementing something like Solomonof induction to formally specify the idea of Earth sitting around in a time loop until it has worked out its CEV [? · GW].
It doesn't matter that the AGI can't compute that. So long as it can reason about what the result of the computation would be without running it, this suffices as a pointer to our CEV. Even if the AGI doesn't manage to infer the exact result of the process, that's fine so long as it can infer some bits of information about the result. This just ends up giving the AGI some moral uncertainty that smoothly goes down as its intelligence goes up.
Unfortunately, afaik these funny strategies seem to not work at the moment. They don't really give you computable code that corresponds to Earth sitting around in a time loop to work out its CEV.
But maybe we can point to the concept without having completely formalised it ourselves?
A Solomonoff inductor walks into a bar in a foreign land. (Stop me if you’ve heard this one before.) The bartender, who is also a Solomonoff inductor, asks “What’ll it be?”. The customer looks around at what the other patrons are having, points to an unfamiliar drink, and says “One of those, please.”. The bartender points to a drawing of the same drink on a menu, and says “One of those?”. The customer replies “Yes, one of those.”. The bartender then delivers a drink, and it matches what the first inductor expected.What’s up with that?
This is from a recent post [LW · GW] on natural latents by John.
Natural latents are an idea that tries to explain, among other things, how one agent can point to a concept and have another agent realise what concept is meant, even when it may naively seem like the pointer is too fuzzy, impresice and low bit rate to allow for this.
If 'CEV as formalized by a time loop' is a sort of natural abstraction, it seems to me like one ought to be able to point to it like this even if we don't have an explicit formal specification of the concept, just like the customer and bartender need not have an explicit formal specification of the drink to point out the drink to each other.
Then, it'd be fine for us to not quite have the code snippet corresponding to e,g. a simulation of Earth going through a time loop to work out its CEV. So long as we can write a pointer such that the closest natural abstraction singled out by that pointer is a code snippet simulating Earth going through a time loop to work out its CEV, we might be fine. Provided we can figure out how abstractions and natural latents in the AGI's mind actually work and manipulate them. But we probably need to figure that out anyway, if we want to point the AGI's values at anything specific whatsoever.
Is 'CEV as formalized by a simulated time loop' a concept made of something like natural latents? I don't know, but I'd kind of suspect it is. It seems suspiciously straightforward for us humans to communicate the concept to each other at least, even as we lack a precise specification of it. We can't write down a lattice quantum field theory simulation of all of the Earth going through the time loop because we don't have the current state of Earth to initialize with. But we can talk to each other about the idea of writing that simulation, and know what we mean.
↑ comment by the gears to ascension (lahwran) · 2024-09-18T10:36:01.796Z · LW(p) · GW(p)
I do think natural latents could have a significant role to play somehow in QACI-like setups, but it doesn't seem like they let you avoid formalizing, at least in the way you're talking about. It seems more interesting in terms of avoiding specifying a universal prior over possible worlds, if we can instead specify a somewhat less universal prior that bakes in assumptions about our worlds' known causal structure. it might help with getting a robust pointer to the start of the time snippet. I don't see how it helps avoiding specifying "looping", or "time snippet", etc. natural latents seem to me to be primarily about the causal structure of our universe, and it's unclear what they even mean otherwise. it seems like our ability to talk about this concept is made up of a bunch of natural latents, and some of them are kind of messy and underspecified by the phrase, mainly relating to what the heck is a physics.
Replies from: Lblack↑ comment by Lucius Bushnaq (Lblack) · 2024-09-18T11:26:48.768Z · LW(p) · GW(p)
it might help with getting a robust pointer to the start of the time snippet.
That's mainly what I meant, yes.
Specifying what the heck a physics is seems much more tractable to me.We don't have a neat theory of quantum gravity, but a lattice simulation of quantum field theory in curved space-time, or just a computer game world populated by characters controlled by neural networks, seems pretty straightforward to formally specify. We could probably start coding that up right now.
What we lack is a pointer to the right initial conditions for the simulation. The wave function of Earth in case of the lattice qft setup, or the human uploads as neural network parameters in case of the game environment.
↑ comment by Tamsin Leake (carado-1) · 2024-09-18T10:22:41.357Z · LW(p) · GW(p)
To me kinda the whole point of QACI is that it tries to actually be fully formalized. Informal definitions seem very much not robust to when superintelligences think about them; fully formalized definitions are the only thing I know of that keep meaning the same thing regardless of what kind of AI looks at it or with what kind of ontology.
I don't really get the whole natural latents ontology at all, and mostly expect it to be too weak for us to be able to get reflectively stable goal-content integrity even as the AI becomes vastly superintelligent. If definitions are informal, that feels to me like degrees of freedom in which an ASI can just pick whichever values make its job easiest.
Perhaps something like this allows use to use current, non-vastly-superintelligent AIs to help design a formalized version of QACI or ESP [LW · GW] which itself is robust enough to be passed to superintelligent optimizers; but my response to this is usually "have you tried first formalizing CEV/QACI/ESP by hand?" because it feels like we've barely tried and like reasonable progress can be made on it that way.
Perhaps there are some cleverer schemes where the superintelligent optimizer is pointed at the weaker current-tech-level AI, itself pointed informally at QACI, and we tell the superintelligent optimizer "do what this guy says"; but that seems like it either leaves too many degrees of freedom to the superintelligent optimizer again, or it requires solving corrigibility (the superintelligent optimizer is corrigibly assisting the weaker AI) at which point why not just point the corrigibility at the human directly and ignore QACI altogether, at least to begin with.
Replies from: Lblack↑ comment by Lucius Bushnaq (Lblack) · 2024-09-18T10:27:58.795Z · LW(p) · GW(p)
The idea would be that an informal definition of a concept conditioned on that informal definition being a pointer to a natural concept, is a formal specification of that concept. Where the is close enough to a that it'd hold up to basically arbitrary optimization power.
Replies from: carado-1↑ comment by Tamsin Leake (carado-1) · 2024-09-18T15:25:29.881Z · LW(p) · GW(p)
So the formalized concept is Get_Simplest_Concept_Which_Can_Be_Informally_Described_As("QACI is an outer alignment scheme consisting of…")
? Is an informal definition written in english?
It seems like "natural latent" here just means "simple (in some simplicity prior)". If I read the first line of your post as:
Has anyone thought about QACI could be located in some simplicity prior, by searching the prior for concepts matching(??in some way??) some informal description in english?
It sure sounds like I should read the two posts you linked (perhaps especially this one [LW · GW]), despite how hard I keep bouncing off of the natural latents idea. I'll give that a try.
Replies from: Lblack↑ comment by Lucius Bushnaq (Lblack) · 2024-09-18T18:30:33.929Z · LW(p) · GW(p)
More like the formalised concept is the thing you get if you poke through the AGI’s internals searching for its representation of the concept combination pointed to by an english sentence plus simulation code, and then point its values at that concept combination.
Replies from: carado-1↑ comment by Tamsin Leake (carado-1) · 2024-09-18T20:20:17.008Z · LW(p) · GW(p)
Seems really wonky and like there could be a lot of things that could go wrong in hard-to-predict ways, but I guess I sorta get the idea.
I guess one of the main things I'm worried about is that it seems to require that we either:
- Be really good at timing when we pause it to look at its internals, such that we look at the internals after it's had long enough to think about things that there are indeed such representations, but not long enough that it started optimizing really hard such that we either {die before we get to look at the internals} or {the internals are deceptively engineered to brainhack whoever would look at them}. If such a time interval even occurs for any amount of time at all.
- Have an AI that is powerful enough to have powerful internals-about-QACI to look at, but corrigible enough that this power is not being used to do instrumentally convergent stuff like eat the world in order to have more resources with which to reason.
Current AIs are not representative of what dealing with powerful optimizers is like; when we'll start getting powerful optimizers, they won't sit around long enough for us to look at them and ponder, they'll just quickly eat us.
↑ comment by Jonas Hallgren · 2024-09-18T14:22:44.320Z · LW(p) · GW(p)
In natural langage maybe it would be something like "given these ontological boundaries, give us the best estimate you can of CEV. "?
It seems kind of related to boundaries as well if you think of natural latents as "functional markov blankets" that cut reality at it's joints then you could probably say that you want to perserve part of that structure that is "human agency" or similar. I don't know if that makes sense but I like the idea direction!
↑ comment by Daniel C (harper-owen) · 2024-09-18T16:31:29.659Z · LW(p) · GW(p)
I think the fact that natural latents are much lower dimensional than all of physics makes it suitable for specifying the pointer to CEV as an equivalence class over physical processes (many quantum field configurations can correspond to the same human, and we want to ignore differences within that equivalence class).
IMO the main bottleneck is to account for the reflective aspects [LW(p) · GW(p)] in CEV, because one constraint of natural latents is that it should be redundantly represented in the environment.
Replies from: Lblack↑ comment by Lucius Bushnaq (Lblack) · 2024-09-19T08:22:13.226Z · LW(p) · GW(p)
It is redundantly represented in the environment, because humans are part of the environment.
If you tell an AI to imagine what happens if humans sit around in a time loop until they figure out what they want, this will single out a specific thought experiment to the AI, provided humans and physics are concepts the AI itself thinks in.
(The time loop part and the condition for terminating the loop can be formally specified in code, so the AI doesn't need to think those are natural concepts)
If the AI didn't have a model of human internals that let it predict the outcome of this scenario, it would be bad at predicting humans.
↑ comment by Daniel C (harper-owen) · 2024-09-19T11:52:03.845Z · LW(p) · GW(p)
natural latents are about whether the AI's cognition routes through the same concepts that humans use.
We can imagine the AI maintaining predictive accuracy about humans without using the same human concepts. For example, it can use low-level physics to simulate the environment, which would be predictively accurate, but that cognition doesn't make use of the concept "strawberry" (in principle, we can still "single out" the concept of "strawberry" within it, but that information comes mostly from us, not from the physics simulation)
Natural latents are equivalent up to isomorphism (ie two latent variables are equivalent iff they give the same conditional probabilities on observables), but for reflective aspects of human cognition, it's unclear whether that equivalence class pin down all information we care about for CEV (there may be differences within the equivalence class that we care about), in a way that generalizes far out of distribution
↑ comment by Lucius Bushnaq (Lblack) · 2024-09-19T15:59:22.966Z · LW(p) · GW(p)
My claim is that the natural latents the AI needs to share for this setup are not about the details of what a 'CEV' is. They are about what researchers mean when they talk about initializing, e.g., a physics simulation with the state of the Earth at a specific moment in time.
Replies from: harper-owen↑ comment by Daniel C (harper-owen) · 2024-09-19T16:51:08.146Z · LW(p) · GW(p)
Noted, that does seem a lot more tractable than using natural latents to pin down details of CEV by itself
comment by Lucius Bushnaq (Lblack) · 2024-11-30T12:26:45.960Z · LW(p) · GW(p)
Two shovel-ready theory projects in interpretability.
Most scientific work, especially theoretical research, isn't "shovel-ready." It's difficult to generate well-defined, self-contained projects where the path forward is clear without extensive background context. In my experience, this is extra true of theory work, where most of the labour if often about figuring out what the project should actually be, because the requirements are unclear or confused.
Nevertheless, I currently have two theory projects related to computation in superposition in my backlog that I think are valuable and that maybe have reasonably clear execution paths. Someone just needs to crunch a bunch of math and write up the results.
Impact story sketch: We now have some very basic theory for how computation in superposition could work[1]. But I think there’s more to do there that could help our understanding. If superposition happens in real models, better theoretical grounding could help us understand what we’re seeing in these models, and how to un-superpose them back into sensible individual circuits and mechanisms we can analyse one at a time. With sufficient understanding, we might even gain some insight into how circuits develop during training.
This post [LW · GW] has a framework for compressing lots of small residual MLPs into one big residual MLP. Both projects are about improving this framework.
1) I think the framework can probably be pretty straightforwardly extended to transformers. This would help make the theory more directly applicable to language models. The key thing to show there is how to do superposition in attention. I suspect you can more or less use the same construction the post uses, with individual attention heads now playing the role of neurons. I put maybe two work days into trying this before giving it up in favour of other projects. I didn’t run into any notable barriers, the calculations just proved to be more extensive than I’d hoped they’d be.
2) Improve error terms for circuits in superposition at finite width. The construction in this post is not optimised to be efficient at finite network width. Maybe the lowest hanging fruit to improving it is changing the hyperparameter , the probability with which we connect a circuit to a set of neurons in the big network. We set in the post, where is the MLP width of the big network and is the minimum neuron count per layer the circuit would need without superposition. The choice here was pretty arbitrary. We just picked it because it made the proof easier. Recently, Apollo played around a bit with superposing very basic one-feature circuits into a real network, and IIRC a range of values seemed to work ok. Getting tighter bounds on the error terms as a function of that are useful at finite width would be helpful here. Then we could better predict how many circuits networks can superpose in real life as a function of their parameter count. If I was tackling this project, I might start by just trying really hard to get a better error formula directly for a while. Just crunch the combinatorics. If that fails, I’d maybe switch to playing more with various choices of in small toy networks to develop intuition. Maybe plot some scaling laws of performance with at various network widths in 1-3 very simple settings. Then try to guess a formula from those curves and try to prove it’s correct.
Another very valuable project is of course to try training models to do computation in superposition instead of hard coding it. But Stefan [LW(p) · GW(p)] mentioned that one already.
- ^
1 [LW · GW] Boolean computations in superposition LW post. 2 Boolean computations paper of LW post with more worked out but some of the fun stuff removed. 3 Some proofs about information-theoretic limits of comp-sup. 4 [LW · GW] General circuits in superposition LW post. If I missed something, a link would be appreciated.